power corrections with scet
play

Power corrections with SCET Robert Szafron Technische Universit at - PowerPoint PPT Presentation

Power corrections with SCET Robert Szafron Technische Universit at M unchen MTTD 2019 1-6 September Katowice Robert Szafron 1/24 Outline 1. Introduction 2. SCET formalism beyond LP N-jet operator Soft loops and KSZ theorem


  1. Power corrections with SCET Robert Szafron Technische Universit¨ at M¨ unchen MTTD 2019 1-6 September Katowice Robert Szafron 1/24

  2. Outline 1. Introduction 2. SCET formalism beyond LP ◮ N-jet operator ◮ Soft loops and KSZ theorem 3. Applications ◮ Threshold resummation for Drell-Yan ◮ gg → H 4. Summary Robert Szafron 1/24

  3. Power expansion Consider expansion of a cross-section in some threshold variable z ∞ � � dσ α n dz = c n δ (1 − z ) s n =0    � ln m (1 − z ) � 2 n − 1 �  c nm + d nm ln m (1 − z )  + . . .  + 1 − z + m =0 ◮ Leading power QCD limits ◮ collinear p i · p j ≪ Q 2 QCD singular limits lead to the appearance of large logarithms of a ratio of different scales ◮ soft E s ≪ Q Before we discover New Physics, we must be sure that we understand the Standard Model! Robert Szafron 1/24

  4. Power expansion Consider expansion of a cross-section in some threshold variable z ∞ � � dσ α n dz = c n δ (1 − z ) s n =0    � ln m (1 − z ) � 2 n − 1 �  c nm + d nm ln m (1 − z )  + . . .  + 1 − z + m =0 ◮ Leading power ◮ Next-to-leading power QCD limits ◮ collinear p i · p j ≪ Q 2 QCD singular limits lead to the appearance of large logarithms of a ratio of different scales ◮ soft E s ≪ Q Before we discover New Physics, we must be sure that we understand the Standard Model! Robert Szafron 1/24

  5. Power expansion Consider expansion of a cross-section in some threshold variable z ∞ � � dσ α n dz = c n δ (1 − z ) s n =0    � ln m (1 − z ) � 2 n − 1 �  c nm + d nm ln m (1 − z )  + . . .  + 1 − z + m =0 ◮ Leading power ◮ Next-to-leading power → α s ln(1 − z ) + α 2 s ln 3 (1 − z ) + . . . ◮ Leading Log: m = 2 n − 1 − QCD limits ◮ collinear p i · p j ≪ Q 2 QCD singular limits lead to the appearance of large logarithms of a ratio of different scales ◮ soft E s ≪ Q Before we discover New Physics, we must be sure that we understand the Standard Model! Robert Szafron 1/24

  6. Factorization at Next-to-Leading power � � N J ( i ) a J ( i ) C a C ∗ dσ = b ⊗ ⊗ S ab b a,b i =1 ◮ C a Hard functions; ∼ Q λ is a power-counting parameter, e.g. λ = 1 − z Robert Szafron 2/24

  7. Factorization at Next-to-Leading power � � N J ( i ) a J ( i ) C a C ∗ dσ = b ⊗ ⊗ S ab b a,b i =1 ◮ C a Hard functions; ∼ Q ◮ J ( i ) i - collinear (jet) functions; ∼ Qλ a λ is a power-counting parameter, e.g. λ = 1 − z Robert Szafron 2/24

  8. Factorization at Next-to-Leading power � � N J ( i ) a J ( i ) C a C ∗ dσ = b ⊗ ⊗ S ab b a,b i =1 ◮ C a Hard functions; ∼ Q ◮ J ( i ) i - collinear (jet) functions; ∼ Qλ a ◮ S ab soft functions ∼ Qλ 2 λ is a power-counting parameter, e.g. λ = 1 − z Robert Szafron 2/24

  9. Factorization at Next-to-Leading power � � N J ( i ) a J ( i ) C a C ∗ dσ = b ⊗ ⊗ S ab b a,b i =1 ◮ C a Hard functions; ∼ Q ◮ J ( i ) i - collinear (jet) functions; ∼ Qλ a ◮ S ab soft functions ∼ Qλ 2 ◮ � ab – sum over various functions, related to different sources of power-suppression λ is a power-counting parameter, e.g. λ = 1 − z Robert Szafron 2/24

  10. A bit of SCET formalism Robert Szafron 3/24

  11. Soft Collinear Effective Field Theory (SCET) [C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, hep-ph/0011336] What is SCET? Effective field theory used to describe energetic particles. QCD SCET Collinear n 3 Collinear Collinear n 2 n 4 Collinear Collinear n 1 n 5 Soft ◮ Collinear sectors where energetic particles within a single region can interact with each other but not with particle in a different sector. ◮ Soft sector - mediates interactions between collinear sectors ◮ Every interaction has well-defined power-counting – allows for systematic expansion Robert Szafron 4/24

  12. Position space formulation of SCET [M. Beneke and T. Feldmann, hep-ph/0211358] � / � n i + 1 L (0) = ¯ in i − D + i / in i + D i / ξ i D ⊥ i D ⊥ i 2 ξ i i � � � L (0) + L (1) L = + . . . i i i ξ i ∼ λ Soft modes are multipole expanded n i + D = n i + ∂ − ign + i A i ∼ 1 φ C ( x ) φ s ( x ) → D µ ⊥ i = ∂ µ ⊥ i − ign + i A µ ⊥ i ∼ λ n µ φ C ( x ) φ s ( x − ) + . . . ; x − = 2 n + x − n i − D = n i − ∂ − ign i − A i − ign i − A s ( x i − ) ∼ λ 2 Light-cone coordinates i = ( n i + p i ) n µ + p i ⊥ i + ( n i − p i ) n µ p µ i − i + p i p j ∼ Q 2 , p 2 i = 0 2 2 n i − p i ∼ λ 2 Q n i + p i , ∼ Q p i ⊥ i ∼ λQ, Robert Szafron 5/24

  13. N-jet operator in SCET [M. Beneke, M. Garny, R. S. and J. Wang, 1712.04416] � � N � � N � � � O ( x ) = dt i C ( { t i } ) ψ i ( x + t i n i + ) i =1 i =1 ◮ C ( { t i } ): hard matching coefficient Robert Szafron 6/24

  14. N-jet operator in SCET [M. Beneke, M. Garny, R. S. and J. Wang, 1712.04416] � � N � � N � � � O ( x ) = dt i C ( { t i } ) ψ i ( x + t i n i + ) i =1 i =1 ◮ C ( { t i } ): hard matching coefficient ◮ ψ i : collinear field (gauge invariant building blocks) ◮ collinear quark χ i ≡ W † i ξ i � � ◮ collinear gluon A µ ⊥ i = W † iD µ ⊥ i W i i Robert Szafron 6/24

  15. N-jet operator in SCET [M. Beneke, M. Garny, R. S. and J. Wang, 1712.04416] � � N � � N � � � O ( x ) = dt i C ( { t i } ) ψ i ( x + t i n i + ) i =1 i =1 ◮ C ( { t i } ): hard matching coefficient ◮ ψ i : collinear field (gauge invariant building blocks) ◮ collinear quark χ i ≡ W † i ξ i � � ◮ collinear gluon A µ ⊥ i = W † iD µ ⊥ i W i i Power suppression: ◮ add derivatives ∂ ⊥ ∼ λ ◮ add extra fields in the same direction Robert Szafron 6/24

  16. N-jet operator in SCET [M. Beneke, M. Garny, R. S. and J. Wang, 1712.04416] � � N � � N � � � O ( x ) = dt i C ( { t i } ) ψ i ( x + t i n i + ) i =1 i =1 ◮ C ( { t i } ): hard matching coefficient ◮ ψ i : collinear field (gauge invariant building blocks) ◮ collinear quark χ i ≡ W † i ξ i � � ◮ collinear gluon A µ ⊥ i = W † iD µ ⊥ i W i i Power suppression: ◮ add derivatives ∂ ⊥ ∼ λ ◮ add extra fields in the same direction Example 3-jet LP operator: � O A 0 dt 1 dt 2 dt 3 C A 0 ( t 1 , t 2 , t 3 ) χ 1 ( t 1 n 1+ ) γ µ χ 2 ( t 2 n 2+ ) A µ 3 (0) = ⊥ 3 ( t 3 n 3+ ) Example 3-jet NLP operators ( λ suppressed): � O A 1 dt 1 dt 2 dt 3 C A 1 ( t 1 , t 2 , t 3 ) χ 1 ( t 1 n 1+ ) γ µ γ ν ∂ ν ⊥ 2 χ 2 ( t 2 n 2+ ) A µ 3 (0) = ⊥ 3 ( t 3 n 3+ ) � O B 1 dt 1 dt 2 dt 3 C B 1 ( t 1 , t 2 , t 3 ) χ 1 ( t 1 n 1+ ) γ µ γ ν A ν ⊥ 2 χ 2 ( t 2 n 2+ ) A µ 3 (0) = ⊥ 3 ( t 3 n 3+ ) Robert Szafron 6/24

  17. Leading power anomalous dimension [T. Becher, M. Neubert, 0901.0722] Simple structure up to two loop: � − s ij � � � Γ = − γ cusp ( α s ) T i · T j ln + γ i ( α s ) µ 2 i<j i s ij = 2 p i · p j + i 0 Soft and collinear parts are known at the three loop level [Ø. Almelid, C. Duhr, E. Gardi 1507.00047; S. Moch, J.A.M. Vermaseren, A. Vogt,hep-ph/0507039] ◮ governs the evolution of the hard functions C A 0 � d d ln µC P = Γ QP C Q Q ◮ QCD: log structure is determined by IR poles ◮ SCET: turns IR poles of QCD into UV poles of N-jet operator – RG technique can be used Robert Szafron 7/24

  18. Next-to-Leading power anomalous dimension � − s ij x i k x j l � � � � Γ P Q ( x, y ) = δ P Q δ ( x − y ) − γ cusp ( α s ) T i k · T j l ln µ 2 i<j k,l � � � � � δ [ i ] ( x − y ) γ i δ ( x − y ) γ ij + γ i k ( α s ) + 2 P Q ( x, y ) + 2 P Q ( y ) i k i i<j New structures at NLP ◮ collinear mixing – fields at different positions along the light-cone mix under renormalization [M. Beneke, M. Garny, R. S. and J. Wang, 1712.04416; M. Beneke, M. Garny, R. S. and J. Wang, 1808.04742 ] q 2 q 2 p p p p t i 1 t i 1 t i 1 t i 1 t i 2 t i 2 t i 2 t i 2 q 2 t i 1 t i 1 t i 1 t i 1 t i 1 q 1 q 1 q 1 q 1 q 2 ( b, i ) F ( b, i ) B ( b, i ) V ( b, i ) J p p p p t i 2 t i 2 t i 2 q 2 t i 1 t i 1 q 2 q 2 t i 1 t i 1 t i 1 t i 2 t i 2 t i 2 t i 2 q 1 q 1 q 1 q 2 q 1 ( b, ii ) B ( b, ii ) V ( b, ii ) J ( b, iii ) F Robert Szafron 8/24

  19. Next-to-Leading power anomalous dimension � − s ij x i k x j l � � � � Γ P Q ( x, y ) = δ P Q δ ( x − y ) − γ cusp ( α s ) T i k · T j l ln µ 2 i<j k,l � � � � � δ [ i ] ( x − y ) γ i δ ( x − y ) γ ij + γ i k ( α s ) + 2 P Q ( x, y ) + 2 P Q ( y ) i k i i<j New structures at NLP ◮ collinear mixing – fields at different positions along the light-cone mix under renormalization ◮ soft mixing – time-ordered products of NLP Lagrangian with the N-jet operator mix into N-jet operator [M. Beneke, M. Garny, R. S. and J. Wang, 1712.04416; M. Beneke, M. Garny, R. S. and J. Wang, 1808.04742 ] q 2 q 2 p p p p t i 1 t i 1 t i 1 t i 1 t i 2 t i 2 t i 2 q t i 2 q 2 q 1 t i 1 t i 1 t i 1 t i 1 t i 1 q 1 q 1 q 1 q 1 q 2 1 ( b, i ) F ( b, i ) B ( b, i ) V ( b, i ) J t i p p p p s t i 2 t i 2 t i 2 q 2 t i 1 t i 1 q 2 q 2 t i 1 t i 1 t i 1 t j t i 2 1 t i 2 t i 2 t i 2 q 1 q 1 q 1 q 2 q 1 q 2 ( b, ii ) B ( b, ii ) V ( b, ii ) J ( b, iii ) F Robert Szafron 8/24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend