scaling laws to quantify tidal dissipation in star planet
play

Scaling laws to quantify tidal dissipation in star-planet systems P - PowerPoint PPT Presentation

Scaling laws to quantify tidal dissipation in star-planet systems P . Auclair-Desrotour, S. Mathis, C. Le Poncin-Lafitte OHP 2015 Twenty years of giant exoplanets General context A revolution in Astrophysics: the discovery of new planetary


  1. Scaling laws to quantify tidal dissipation in star-planet systems P . Auclair-Desrotour, S. Mathis, C. Le Poncin-Lafitte OHP 2015 – Twenty years of giant exoplanets

  2. General context A revolution in Astrophysics: the discovery of new planetary systems and the characterisation of their host stars Kepler – K2 CFHT ; SPIRou CoRoT CHEOPS & TESS PLATO Stellar and planetary rotation history Orbital architecture Kepler 11 Mercury orbit Lissauer et al. (2011) Albrecht et al. (2012); Gizon et al. (2013) Bolmont et al. (2014) à Need to understand angular momentum exchanges within star-planet systems à TIDES à 2 OHP 2015 – 09/10/2015

  3. State of the art In studies of star-planet systems, bodies are treated as point-mass objects or solids with prescriptions for tides calibrated on observations or on formation scenarii. However their complex internal structure, rotation, and magnetism impact tidal dissipation. Host star (M in M ¤ ¤ ) Planets à Need of an ab-initio physical modeling à 3 OHP 2015 – 09/10/2015

  4. Tidal waves in stars and fluid planetary layers Excitation by each Fourier component of the tidal potential Brünt-Vaïsälä frequency 0 ω A 2 Ω N f L σ o Alfvén waves Acoustic waves Inertial waves Inertia frequency Internal gravity waves Mixed waves: Ω s and B ϕ are Ω B Magneto-Gravito-Inertial perturbations ( Ω s and B ϕ can not be B ( Ω Mathis & Remus (2013) treated as perturbations) 4 OHP 2015 – 09/10/2015

  5. A resonant erratic tidal dissipation spectrum Dissipation spectrum by turbulent friction Forced (gravito-) inertial waves ( ) ∝ D − 1 ω E=10 -7 ( ) Q = f ω à resonant response à ν T , 2 Ω K , N Q=10 5 F M Inertial waves E.T. E.T. 2(n- Ω )/ Ω Ogilvie & Lin (2004) : the case of Jupiter Dintrans & Rieutord (2000) Ogilvie & Lin (2007) Rieutord & Valdetarro (2010) Baruteau & Rieutord (2013) 5 OHP 2015 – 09/10/2015 Guenel et al. (2015)

  6. A reduced local model to understand tidal dissipation in fluids - Cartesian geometry - Rotating and inclined - Possible stable stratification - Viscous and thermal dissipation Control parameters: ✓ N ◆ 2 Stratification A = , Coriolis 2 Ω Ogilvie & Lin (2004) E = 2 π 2 ν Viscous force Ω L 2 , Auclair-Desrotour, Le Poncin-Lafitte, Mathis (2015) Coriolis K = 2 π 2 κ Thermal diffusivity Coriolis Ω L 2 6 OHP 2015 – 09/10/2015

  7. Tidal hydrodynamics in the reduced local model Archimedean force Viscous friction Coriolis 1 0 � N Ek r 2 u � b = f , Dynamics ∂ T u + e z ^ u + 2 Ω L ρ r p Mass conservation Perturbation r · u = 0 . ∂ T b + A w = N di ff r 2 b , Heat transport Thermal diffusion Stratification • ✓ κ Z 8 ◆ N 2 , 0 D therm = N 2 B r 2 B > ρ d V if Z Z > > ⇣ ⌘ D visc = E forcing = ν u · r 2 u < ρ d V , ρ ( u · F ) d V , V > D therm = 0 N 2 = 0 > if V > V : Viscous friction Forcing Thermal diffusion 7 OHP 2015 – 09/10/2015

  8. Tidal dissipation in the reduced local model X Expansion of the solution in Fourier series: u mn e i 2 π ( mX + nZ ) , u = v Influence of the perturbation Viscous diffusivity ⇣ m 2 + n 2 ⌘ ω ( n f mn � mh mn ) � n cos θ g mn i ˜ 8 ω = ω + iE ˜ u mn = n , > > > � m 2 + n 2 � ˜ ω 2 � n 2 cos 2 θ � Am 2 ˜ ω > ⇣ m 2 + n 2 ⌘ > > ω = ω + iK ˆ . > > > ω ˆ > > > > > > Inertial response Thermal diffusivity X ⇣ m 2 + n 2 ⌘ ⇣� ⌘ ζ visc = 2 π E � � � � � � u 2 � v 2 � w 2 , Viscous friction � + � + � � � � � � mn mn mn � ( m , n ) 2 Z ⇤ 2 X | b mn | 2 , ⇣ m 2 + n 2 ⌘ ζ therm = 2 π KA � 2 Thermal diffusion ( m , n ) 2 Z ⇤ 2 8 OHP 2015 – 09/10/2015

  9. An evolving behaviour Deacrising viscosity / increasing rotation E=10 -3 E=10 -5 E=10 -4 Increasing stratification E=10 -4 , A=25 9 OHP 2015 – 09/10/2015

  10. The four main regimes Dissipation controlled by viscosity Pr = E K a b Inertial Gravito- waves inertial waves CZ Stable Zone c d ✓ N ◆ 2 A = , 2 Ω Dissipation controlled by thermal diffusivity 10 Auclair-Desrotour, Mathis, Le Poncin-Lafitte (2015) OHP 2015 – 09/10/2015

  11. The four main regimes Dissipation controlled by viscosity Pr = E K Viscous friction a b Inertial Gravito- waves inertial waves CZ Stable Zone c d Thermal diffusion ✓ N ◆ 2 A = , 2 Ω Dissipation controlled by thermal diffusivity 11 Auclair-Desrotour, Mathis, Le Poncin-Lafitte (2015) OHP 2015 – 09/10/2015

  12. � � � � − − � − � � − � − � � � − − − − − − − − − − − − − � � � � − � � − � � � � − � � � � − � � − � � � − − − − The complex erratic tidal dissipation spectrum − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − E = 10 -4 , A = 0, K = 0, θ = 0 E = 10 � 4 4 2 n 2 cos 2 θ + Am 2 ⌘ ⇣ m 2 + n 2 ⌘ Am 2 K + E ⇣ l mn = . n 2 cos 2 θ + Am 2 � � log 10 � [J.kg � 1 ] � ⌘ 3 2 ⇣ ⌘ ⇣ A + cos 2 θ 2 cos 2 + A − � Ξ = 1 i . � ⇥ AK + � 2 cos 2 + A � E ⇤ 2 h − 2 in cos 2 θ + C 1 C 1 grav A − 0 − 2 n 2 cos 2 θ + Am 2 ⌘ ⇣ n 2 cos 2 θ + Am 2 ⌘ ⇣ 8 π F 2 E − H mn = ⇥ Am 2 K + � 2 n 2 cos 2 θ + Am 2 � E ⇤ 2 , − 2 m 2 n 2 � m 2 + n 2 � 2 − − − − − − − − − (49) � � � � − 4 � in cos 2 θ C 1 grav A + C 1 H bg = 4 π F 2 E � A + cos 2 θ � 2 1 ⌘ 3 8 ⇣ 2 cos 2 θ + A ⌘ ⇣ A + cos 2 θ 9 0 0.5 1 1.5 2 4 1 > > > > > > N kc ⇠ < = . ⇥ AK + � 2 cos 2 + A � E ⇤ 2 h in cos 2 θ + C 1 i > 2 > C 1 grav A > > > > : ; � à Complete characterization ! − − − − − − − − à Viscous friction 12 12 OHP 2015 – 09/10/2015 � � � � − − − − − − − − � � � � � � � � − − − − − − − − − − − − − − − −

  13. Asymptotic scaling laws D omain A ⌧ A 11 A � A 11 a b n m p l mn / E m 2 + n 2 cos θ l mn / E A ω mn / ω mn / p p m 2 + n 2 P r � P reg r ;11 H mn / E � 1 N kc / E � 1 / 2 H mn / E � 1 N kc / A 1 / 4 E � 1 / 2 Ξ / E � 2 H bg / A � 1 E Ξ / AE � 2 H bg / E f c p n m l mn / EP � 1 l mn / E ω mn / m 2 + n 2 cos θ ω mn / A p p r m 2 + n 2 P r � P diss P r � P r ;11 N kc / A 1 / 4 E � 1 / 2 P 1 / 2 H mn / E � 1 P � 1 N kc / E � 1 / 2 H mn / E � 1 P 2 r ;11 r r r H bg / EP � 1 Ξ / E � 2 H bg / A � 1 E Ξ / AE � 2 P 2 P r ⌧ P reg r r r ;11 d e n m p l mn / AEP � 1 l mn / EP � 1 m 2 + n 2 cos θ A ω mn / ω mn / p p r r m 2 + n 2 P r ⌧ P diss P r ⌧ P r ;11 N kc / A � 1 / 2 E � 1 / 2 P 1 / 2 N kc / A 1 / 4 E � 1 / 2 P 1 / 2 H mn / A � 2 E � 1 P r H mn / A � 1 E � 1 P r r ;11 r r H bg / EP � 1 Ξ / A � 2 E � 2 P 2 H bg / A � 2 EP � 1 Ξ / AE � 2 P 2 r r r r Table 14. Scaling laws for the properties of the energy dissipated in the di erent asymptotic regimes. P diss indicates the transition zone between 13 OHP 2015 – 09/10/2015

  14. Asymptotic scaling laws D omain A ⌧ A 11 A � A 11 a b n m p l mn / E m 2 + n 2 cos θ l mn / E A ω mn / ω mn / p p m 2 + n 2 P r � P reg r ;11 H mn / E � 1 N kc / E � 1 / 2 H mn / E � 1 N kc / A 1 / 4 E � 1 / 2 − 1 Ξ / E � 2 H bg / A � 1 E Ξ / AE � 2 H bg / E − 2 f c p n m A = 10 � 4 l mn / EP � 1 l mn / E ω mn / m 2 + n 2 cos θ ω mn / A p p − 3 r m 2 + n 2 A = 10 � 3 log 10 l 11 A = 10 � 2 P r � P diss P r � P r ;11 N kc / A 1 / 4 E � 1 / 2 P 1 / 2 − 4 H mn / E � 1 P � 1 N kc / E � 1 / 2 H mn / E � 1 P 2 A = 10 � 1 r ;11 r r r A = 10 0 H bg / EP � 1 Ξ / E � 2 H bg / A � 1 E Ξ / AE � 2 P 2 − 5 A = 10 1 P r ⌧ P reg r r r ;11 A = 10 2 d e − 6 A = 10 3 n m p l mn / AEP � 1 l mn / EP � 1 m 2 + n 2 cos θ A ω mn / ω mn / p p r r m 2 + n 2 − 7 P r ⌧ P diss P r ⌧ P r ;11 N kc / A � 1 / 2 E � 1 / 2 P 1 / 2 N kc / A 1 / 4 E � 1 / 2 P 1 / 2 H mn / A � 2 E � 1 P r H mn / A � 1 E � 1 P r Width r ;11 r r − 8 − 9 − 8 − 7 − 6 − 5 − 4 − 3 − 2 H bg / EP � 1 Ξ / A � 2 E � 2 P 2 H bg / A � 2 EP � 1 Ξ / AE � 2 P 2 r r r r log 10 E Table 14. Scaling laws for the properties of the energy dissipated in the di erent asymptotic regimes. P diss indicates the transition zone between 14 OHP 2015 – 09/10/2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend