scaling laws for products of random matrices
play

Scaling laws for products of random matrices Lois d echelle pour - PowerPoint PPT Presentation

Scaling laws for products of random matrices Lois d echelle pour les produits de matrices al eatoires Jean-Marc Luck Institut de Physique Th eorique (CEA & CNRS) Forum de la Th eorie, 3 et 4 avril 2013 1 Outline A


  1. Scaling laws for products of random matrices Lois d’´ echelle pour les produits de matrices al´ eatoires Jean-Marc Luck Institut de Physique Th´ eorique (CEA & CNRS) Forum de la Th´ eorie, 3 et 4 avril 2013 1

  2. Outline • A reminder on sums and products of random numbers • Products of random matrices • One-dimensional systems and products of transfer matrices • The ferromagnetic Ising chain in a random magnetic field • The tight-binding model in a random potential • Band-edge scaling law • Ubiquity of scaling laws and their classification • Table of scaling functions 2

  3. A reminder on sums and products of random numbers S N = x 1 + ··· + x N Sum of random numbers: x i random, independent and identically distributed (i.i.d.) var x = x 2 − x 2 = σ 2 x = m and finite Laws of large numbers: S N is asymptotically Gaussian (normal) for large N S N = Nm and var S N = N σ 2 f(S N ) σ N 1/2 • Sum is peaked around its mean value √ • Relative fluctuations fall off as 1 / N S N Nm 3

  4. P N = x 1 ··· x N Product of random numbers: x i i.i.d. positive random numbers P typ = e N ln x • Product peaked around typical value N ln P typ = ln P N = N ln x N • Mean value of product is exponentially deep in the tail P N = x N = e N ln x ≫ P typ ln x < ln x implies N f(P N ) P N P N typ P N 4

  5. Products of random matrices P N = M 1 ··· M N M i i.i.d. random matrices (say real and of size p × p ) ∼ e N γ P typ Again peaked around typical value: N 1 γ = lim N ln | tr P N | is Lyapunov exponent (Furstenberg, 1963) N → ∞ • Describes typical value only (relevant for disordered systems) • Generalizes explicit results ln x (numbers) and ln λ (constant matrices) • Difficult to calculate in general (even in the 2 × 2 case !) 5

  6. One-dimensional systems and products of transfer matrices • One-dimensional system: sequence of independent units • Linear equations for each unit: transfer matrix M 1 M 1 M 2 M 3 M 4 M 5 Transfer-matrix formalism has proved useful in many areas • Optics, electromagnetism, etc. • Statistical Physics Disordered systems: products of random transfer matrices Ferromagnetic Ising chain in a random magnetic field Tight-binding model for an electron in a random potential 6

  7. The ferromagnetic Ising chain in a random magnetic field H = − J ∑ σ n σ n + 1 − ∑ h n σ n n n σ n = ± 1 : classical Ising spins J > 0 : uniform ferromagnetic exchange constant h n : random magnetic fields (i.i.d. random variables) Canonical ensemble : partition function and free energy β = 1 / T : inverse temperature Z N = ∑ F N e − β H F N = − T ln Z N f = lim N → ∞ N { σ n } 7

  8. Transfer-matrix formalism conditioned on the last spin ( σ n = ± ) Partition functions Z ± n � e β ( J + h n ) e β ( − J + h n ) � Z + � � � Z + � n n − 1 = e β ( − J − h n ) e β ( J − h n ) Z − Z − n n − 1 � �� � M ( h n ) Chain of N spins with periodic boundary conditions Z N = tr M ( h N ) ··· M ( h 2 ) M ( h 1 ) 8

  9. ( N → ∞ ) Thermodynamic limit • Constant magnetic field ( h n = h ) (Ising, 1924) f = − T ln λ λ is largest eigenvalue of M ( h ) � λ = e β J � sinh 2 β h + e − 4 β J � cosh β h + • Random magnetic field ( h n i.i.d.) f = − T γ γ is Lyapunov exponent of matrix product M ( h N ) ··· M ( h 2 ) M ( h 1 ) 9

  10. Statistics of free energy (ground-state energy) in disordered systems For finite system of N sites Free energy F N = − T ln Z N is a random variable (Brout, 1959) F qu • Quenched average = − T ln Z N N describes properties of typical sample F qu ≈ N f is physical: N F qu ≈ − NT γ given by Lyapunov exponent for 1D system: N F an • Annealed average = − T ln Z N N is unphysical > F qu F an provides (useful) bound N N 10

  11. The tight-binding model in a random potential − e ψ n + 1 + ψ n − 1 + V n ψ n = E ψ n ψ n : amplitude of wavefunction at site n E : energy eigenvalue V n : random site energies (i.i.d. random variables) 11

  12. Transfer-matrix formalism � ψ n � ψ n + 1 � � E − V n � � − 1 = ψ n ψ n − 1 1 0 � �� � M ( V n ) • Constant potential ( V n = V ) ψ n ∼ e i nq Plane waves: tr M ( V ) = E − V = 2cos q Dispersion law: • Static random potential ( V n i.i.d.) � � � ∼ e n γ � ψ typ n γ is Lyapunov exponent of matrix product M ( V N ) ··· M ( V 2 ) M ( V 1 ) γ > 0 on the spectrum 12

  13. Interpretation: localization by disorder (Anderson, 1958) • Eigenfunctions ψ n are all localized in 1D • Their hull falls off exponentially as | ψ n | ∼ exp ( ± n / ξ ) • Localization length ξ = 1 γ 0.4 0.3 0.2 0.1 ψ n 0 −0.1 −0.2 −0.3 −0.4 0 50 100 150 200 n 13

  14. ( V = 0 , V 2 ≪ 1 ) Weak-disorder regime Ω = γ + i π H • Complex characteristic exponent: (Cf. Sturm, 1836) γ : Lyapunov exponent Z ∞ E ρ ( E ′ ) d E ′ : H ( E ) = integrated density of states • Perturbative result (Thouless, 1972) E = 2cosh µ (Outside the band) V 2 Ω = µ − 8sinh 2 µ + ··· 14

  15. Behavior of inverse localization length γ = 1 / ξ • Outside band ( | E | > 2 ) γ ≈ µ 1.5 • Inside band ( | E | < 2 , µ → i q ) 1 V 2 γ ≈ 8sin 2 q γ 0.5 β 2 β 2 • Near band edges ( V 2 and µ small) β β 0 γ ∼ β ∼ ( V 2 ) 1 / 3 −4 −2 0 2 4 E E − 2 ∼ β 2 ∼ ( V 2 ) 2 / 3 15

  16. Band-edge scaling law (Halperin, 1965; Derrida & Gardner, 1984) Weak disorder ( V 2 ≪ 1 ) + Band edge ( µ ≪ 1 ) = Scaling behavior Ω = γ + i π H = β G ( x ) x = µ 2 E − 2 � � 1 / 3 , V 2 / 2 β = β 2 = � � 2 / 3 V 2 / 2 G ( x ) = e − 2i π / 3 Ai ′ ( e − 2i π / 3 x ) Ai ( e − 2i π / 3 x ) = Ai ′ ( x )+ iBi ′ ( x ) Ai ( x )+ iBi ( x ) • Non-trivial scaling function G ( x ) mixing real and imaginary parts • Involves logarithmic derivative of special function Here: Ai , Bi : Airy functions 16

  17. Ubiquity of scaling laws and their classification Quite generally: Weak disorder + ‘Interesting point’ (band edge, critical point) = Scaling behavior Our work (CLTT, 2013) • Group SL 2 ( R ) of 2 × 2 real matrices with unit determinant • Continuum limit of matrices close to unity Outcome • Classification of scaling functions describing Ω • In correspondence with special functions • Classification of types of collective behavior of 1D disordered systems 17

  18. Universal model (Comtet, Texier, Tourigny, 2010) Kronig-Penney model with double impurities (point-like scatterers) u n − d 2 ψ d x 2 +( W ( x )+ U ( x )) ψ = ψ α n w n x n : positions of impurities α n = x n − x n − 1 : distances between impurities W ( x ) = ∑ � � δ 2 ( x − x n )+ δ ′ ( x − x n ) w n : supersymmetric potential n U ( x ) = ∑ u n δ ( x − x n ) : scalar potential n 18

  19. Universal transfer matrix M ( α n , w n , u n ) = K ( α n ) A ( w n ) N ( u n ) � cos α − sin α � � e w � � 1 � 0 u K ( α ) = , A ( w ) = , N ( u ) = sin α cos α e − w 0 0 1 This is the Iwasawa decomposition of the group SL 2 ( R ) (Iwasawa, 1949) Subgroup Compact Abelian Nilpotent Disorder Distance Supersymmetric Scalar 19

  20. Continuum limit of matrices close to unity • 3 average values α , w , u • 6 elements of covariance matrix D αα = α 2 − α 2 , D α w = α w − α w , etc. simultaneously small Main outcome • Ω as explicit homogeneous function of these 9 parameters Ω = ··· S ′ ( x ) • involves logarithmic derivative of special function: S ( x ) 20

  21. Table of scaling functions S ( x ) Zeros Disorder Special function Ai ( e − 2i π / 3 x ) 1 quadruple scalar Airy K ν ( x ) 2 double supersymmetric Bessel I i λ ( x ) 2 double distance Bessel W lm ( x ) 1 double + 2 simple general potential Whittaker K ( k ) 4 simple ‘independent’ elliptic 2 F 1 ( α , β ; γ ; x ) 4 simple general hypergeometric • Provides classification of types of collective behavior in 1D disordered systems • Zeros: complex roots of instrumental fourth-degree polynomial • Complex analysis is key novel ingredient 21

  22. To conclude... three references • R. Brout, Statistical-mechanical theory of a random ferromagnetic system Phys. Rev. 115 (1959) 824 • JML, Syst` emes d´ esordonn´ es unidimensionnels Collection Al´ ea Saclay (1992) • A. Comtet, JML, C. Texier, Y. Tourigny, The Lyapunov exponent of products of random 2 × 2 matrices close to the identity J. Stat. Phys. 150 (2013) 13 (arXiv:1208.6430) 22

  23. Appendix: main steps of derivation � X n � � X n − 1 � • Sequence of vectors = M n Y n Y n − 1 � A n � B n M n = M ( α n , w n , u n ) = C n D n Z n = X n • Riccati variables Y n Z n = A n Z n − 1 + B n C n Z n − 1 + D n Ω = lim n → ∞ ln ( C n Z n − 1 + D n + i0 ) 23

  24. • Continuum limit: Z ( n ) → continuous process � d Z = V ( Z ) d n + 2 D ( Z ) d W ( n ) V ( Z ) = − α ( Z 2 + 1 )+ 2 wZ + u + D αα Z ( Z 2 + 1 )+ 2 D ww Z − 4 D α w Z 2 − 2 D α u Z + 2 D wu 2 D ( Z ) = D αα ( Z 2 + 1 ) 2 + 4 D ww Z 2 + D uu − 4 D α w Z ( Z 2 + 1 ) − 2 D α u ( Z 2 + 1 )+ 4 D wu Z 24

  25. • Hilbert transform of invariant distribution Z + ∞ f ( Z ) d Z F ( y ) = y − Z − ∞ • F ( y ) analytic in lower half plane ( Im y < 0 ) • Polynomial differential equation Q ( y ) F ′ ( y )+ R ( y ) F ( y ) = S ( y )+ 2 Ω These two conditions determine both F ( y ) and Ω 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend