convolutions and fluctuations free finite quantized
play

Convolutions and fluctuations: free, finite, quantized. Vadim Gorin - PowerPoint PPT Presentation

Convolutions and fluctuations: free, finite, quantized. Vadim Gorin MIT (Cambridge) and IITP (Moscow) February 2018 Hermitian matrix operations 0 0 a 1 b 1 0 a 2 0 0 b 2 0 A = B =


  1. Convolutions and fluctuations: free, finite, quantized. Vadim Gorin MIT (Cambridge) and IITP (Moscow) February 2018

  2. Hermitian matrix operations     0 0 a 1 b 1 0 a 2 0 0 b 2 0     A = B =     ... ...     0 0 0 0     0 0 a N b N U , V − Haar–random in Unitary ( N ; R / C / H ) C = UAU ∗ + VBV ∗ տ ր uniformly random eigenvectors

  3. Hermitian matrix operations     0 0 a 1 b 1 0 a 2 0 0 b 2 0     A = B =     ... ...     0 0 0 0     0 0 a N b N U , V − Haar–random in Unitary ( N ; R / C / H ) C = UAU ∗ + VBV ∗ տ ր uniformly random eigenvectors ւ ց ց or C = ( UAU ∗ ) · ( VBV ∗ ) or C = P k ( UAU ∗ ) P k Question: What can you say about eigenvalues of C ?

  4. Hermitian matrix operations     0 0 a 1 b 1 0 a 2 0 0 b 2 0     A = B =     ... ...     0 0 0 0     0 0 a N b N U , V − Haar–random in Unitary ( N ; R / C / H ) C = UAU ∗ + VBV ∗ տ ր uniformly random eigenvectors ւ ց ց or C = ( UAU ∗ ) · ( VBV ∗ ) or C = P k ( UAU ∗ ) P k Question: What can you say about eigenvalues of C ? I) As β (= 1 , 2 , 4) → ∞ II) As N → ∞ III) In discretization

  5. As β (= 1 , 2 , 4) → ∞ Theorem. (Gorin–Marcus–17) Eigenvalues of C crystallize (=they become deterministic) as β → ∞ : β →∞ C = UAU ∗ + VBV ∗ lim N N ( z − c i ) = 1 � � � ( z − a i − b σ ( i ) ) N ! i =1 i =1 σ ∈ S ( N ) β →∞ C = ( UAU ∗ ) · ( VBV ∗ ) lim N N ( z − c i ) = 1 � � � ( z − a i b σ ( i ) ) N ! i =1 i =1 σ ∈ S ( N ) β →∞ C = P k ( UAU ∗ ) P k lim k N ( z − c i ) ∼ ∂ N − k � � ( z − a i ) ∂ z N − k i =1 i =1 Finite free convolutions and projection

  6. As N → ∞ Theorem. (Voiculescu, 80s) At β = 1 , 2 empirical measure of eigenvalues of C becomes deterministic as N → ∞ . N N N 1 1 1 � � � µ A = lim δ a i µ B = lim δ b i µ C = lim δ c i N N N N →∞ N →∞ N →∞ i =1 i =1 i =1 � µ ( dx ) G µ ( z ) = z − x � − 1 − 1 z � − 1 � � R µ ( z ) = G µ ( z ) z , S µ ( z ) = 1 − zG µ ( z ) 1 + z N →∞ C = UAU ∗ + VBV ∗ lim R µ C ( z ) = R µ A ( z ) + R µ B ( z ) N →∞ C = ( UAU ∗ ) · ( VBV ∗ ) lim S µ C ( z ) = S µ A ( z ) · S µ B ( z ) N →∞ C = P k ( UAU ∗ ) P k R µ C ( z ) = N lim k R µ A ( z ) Free convolutions and projection

  7. As N → ∞ Theorem. (Voiculescu, 80s) At β = 1 , 2 empirical measure of eigenvalues of C becomes deterministic as N → ∞ . N N N 1 1 1 � � � µ A = lim δ a i µ B = lim δ b i µ C = lim δ c i N N N N →∞ N →∞ N →∞ i =1 i =1 i =1 � µ ( dx ) G µ ( z ) = z − x � − 1 − 1 z � − 1 � � R µ ( z ) = G µ ( z ) z , S µ ( z ) = 1 − zG µ ( z ) 1 + z N →∞ C = UAU ∗ + VBV ∗ lim R µ C ( z ) = R µ A ( z ) + R µ B ( z ) N →∞ C = ( UAU ∗ ) · ( VBV ∗ ) lim S µ C ( z ) = S µ A ( z ) · S µ B ( z ) N →∞ C = P k ( UAU ∗ ) P k R µ C ( z ) = N lim k R µ A ( z ) Free convolutions and projection Conjecture. Same is true for any fixed β > 0 .

  8. Discretization T λ irreducible (linear) representations of U ( N ; C ) λ 1 > λ 2 > · · · > λ N , λ i ∈ Z . � c κ T λ ⊗ T ν = λ,ν T κ κ Littlewood–Richardson coefficients c κ λ,ν intractable as N → ∞ .

  9. Discretization T λ irreducible (linear) representations of U ( N ; C ) λ 1 > λ 2 > · · · > λ N , λ i ∈ Z . � c κ T λ ⊗ T ν = λ,ν T κ κ Littlewood–Richardson coefficients c κ λ,ν intractable as N → ∞ . dim( T κ ) c κ λ,ν Random κ through P ( κ ) = . dim T λ · dim T ν Semi-classical limit degenerates representations of a Lie group into orbital measures on its Lie algebra → UAU ∗ + VBV ∗ T λ ⊗ T ν −

  10. Discretization Theorem. (Gorin–Bufetov–13; following Biane in 90s) Empirical measure of ν becomes deterministic as N → ∞ . dim( T κ ) c κ λ,ν � c κ T λ ⊗ T ν = λ,ν T κ , P ( κ ) = dim T λ · dim T ν κ N N 1 � λ i � 1 � κ i � � � µ λ = lim δ , µ κ = lim δ N N N N N →∞ N →∞ i =1 i =1 տ ր Scaling is important! � µ ( dx ) � − 1 1 � G µ ( z ) = z − x , R quant ( z ) = G µ ( z ) − µ 1 − exp( − z ) R quant ( z ) = R quant ( z ) + R quant ( z ) µ κ µ λ µ ν Quantized free convolution

  11. Discretization Theorem. (Gorin–Bufetov–13; following Biane in 90s) Empirical measure of ν becomes deterministic as N → ∞ . dim( T κ ) c κ λ,ν � c κ T λ ⊗ T ν = λ,ν T κ , P ( κ ) = dim T λ · dim T ν κ N N 1 � λ i � 1 � κ i � � � µ λ = lim δ , µ κ = lim δ N N N N N →∞ N →∞ i =1 i =1 տ ր Scaling is important! � µ ( dx ) � − 1 1 � G µ ( z ) = z − x , R quant ( z ) = G µ ( z ) − µ 1 − exp( − z ) R quant ( z ) = R quant ( z ) + R quant ( z ) µ κ µ λ µ ν Quantized free convolution Restrictions to smaller subgroups lead to projection .

  12. Zoo of operations T λ ⊗ T ν = � c κ λ,ν T κ C = ( UAU ∗ ) · ( V BV ∗ ) U ( k ) = � c κ A, B ≈ 1 � T λ λ T κ � semi-classical semi-classical B = P k C = UAU ∗ + V BV ∗ β → ∞ C = P k ( UAU ∗ ) P k β → ∞ β → ∞ � ( z − c i ) = 1 � � ( z − a i b σ ( i ) ) N ! � ( z − c i ) = 1 � � ( z − a i − b σ ( i ) ) N ! A, B ≈ 1 B = P k ∂ N − k � ( z − c i ) ∼ � ( z − a i ) R quant ( z ) = R quant ( z ) + R quant ∂z N − k ( z ) µ κ µ λ µ ν semi-classical S µ C ( z ) = S µ A ( z ) · S µ B ( z ) N → ∞ N → ∞ N → ∞ R quant ( z ) = N k R quant ( z ) µ κ µ λ R µ C ( z ) = R µ A ( z ) + R µ B ( z ) R µ C ( z ) = N k R µ A ( z ) semi-classical A, B ≈ 1 Operations on matrices and representations lead to a variety of Laws of Large Numbers , resulting in convolutions . They are all cross-related by limit transitions.

  13. Zoo of operations T λ ⊗ T ν = � c κ λ,ν T κ C = ( UAU ∗ ) · ( V BV ∗ ) U ( k ) = � c κ A, B ≈ 1 � T λ λ T κ � semi-classical semi-classical B = P k C = UAU ∗ + V BV ∗ β → ∞ C = P k ( UAU ∗ ) P k β → ∞ β → ∞ � ( z − c i ) = 1 � � ( z − a i b σ ( i ) ) N ! � ( z − c i ) = 1 � � ( z − a i − b σ ( i ) ) N ! A, B ≈ 1 B = P k ∂ N − k � ( z − c i ) ∼ � ( z − a i ) R quant ( z ) = R quant ( z ) + R quant ∂z N − k ( z ) µ κ µ λ µ ν semi-classical S µ C ( z ) = S µ A ( z ) · S µ B ( z ) N → ∞ N → ∞ N → ∞ R quant ( z ) = N k R quant ( z ) µ κ µ λ R µ C ( z ) = R µ A ( z ) + R µ B ( z ) R µ C ( z ) = N k R µ A ( z ) semi-classical A, B ≈ 1 Operations on matrices and representations lead to a variety of Laws of Large Numbers , resulting in convolutions . They are all cross-related by limit transitions. We present a unifying framework for the operations.

  14. Matrix corners The most explicit case. N × N matrix UAU ∗ a 1 a 2 a 3 a 4   M 11 M 12 M 13 M 14 x 3 x 3 x 3 1 2 3 M 21 M 22 M 23 M 24     M 31 M 32 M 33 M 34 x 2 x 2 1 2   M 41 M 42 M 43 M 44 x 1 1 Theorem. (Gelfand–Naimark–50s; Baryshnikov, Neretin – 00s) With ( x N 1 , . . . , x N N ) = ( a 1 , . . . , a N ) , the joint law of particles is N − 1 k k +1 � � � � ( x k i − x k j ) 2 − β | x k a − x k +1 | β/ 2 − 1 b a =1 k =1 1 ≤ i < j ≤ k b =1 • A basis of extension from β = 1 , 2 , 4 to general β > 0 . • Consistent with (Hermite/Laguerre/Jacobi) β log–gases

  15. Matrix corners N × N matrix UAU ∗ a 1 a 2 a 3 a 4   M 11 M 12 M 13 M 14 x 3 x 3 x 3 M 21 M 22 M 23 M 24 1 2 3     x 2 x 2 M 31 M 32 M 33 M 34 1 2   M 41 M 42 M 43 M 44 x 1 1 N − 1 k k +1 � � ( x k i − x k j ) 2 − β � � | x k a − x k +1 | β/ 2 − 1 b k =1 1 ≤ i < j ≤ k a =1 b =1 Multivariate Bessel Function     N k k − 1 � � � x k − 1 x k B a 1 ,..., a N ( z 1 , . . . , z N ) = E exp z k · i −   j   k =1 i =1 j =1

  16. Matrix corners N × N matrix UAU ∗ a 1 a 2 a 3 a 4   M 11 M 12 M 13 M 14 x 3 x 3 x 3 M 21 M 22 M 23 M 24 1 2 3     x 2 x 2 M 31 M 32 M 33 M 34 1 2   M 41 M 42 M 43 M 44 x 1 1 N − 1 k k +1 � � ( x k i − x k j ) 2 − β � � | x k a − x k +1 | β/ 2 − 1 b k =1 1 ≤ i < j ≤ k a =1 b =1 Multivariate Bessel Function     N k k − 1 � � � x k − 1 x k B a 1 ,..., a N ( z 1 , . . . , z N ) = E exp z k · i −   j   k =1 i =1 j =1 ր Diagonal matrix elements at β = 1 , 2 , 4 Proposition. B a 1 ,..., a N ( z 1 , . . . , z N ) is symmetric in z 1 , . . . , z N .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend