spectral rigidity for addition of random matrices at the
play

Spectral rigidity for addition of random matrices at the regular - PowerPoint PPT Presentation

Spectral rigidity for addition of random matrices at the regular edge Zhigang Bao HKUST Random Matrices and Related Topics KIAS, Seoul, Korea May 6 -10, 2019 Joint with L aszl o Erd os and Kevin Schnelli 1 Addition of random


  1. Spectral rigidity for addition of random matrices at the regular edge Zhigang Bao HKUST Random Matrices and Related Topics KIAS, Seoul, Korea May 6 -10, 2019 Joint with L´ aszl´ o Erd˝ os and Kevin Schnelli 1

  2. Addition of random matrices Given real A = diag( a 1 , . . . , a N ) and B = diag( b 1 , . . . , b N ), Matrix model: consider the model H = A + UBU ∗ where U is a Haar unitary matrix. Global spectral distribution [Voiculescu ’91]: � � µ A = 1 µ B = 1 Let i δ a i i δ b i N N When N is large, The empirical spectral distribution of H � µ H = 1 δ λ i , λ 1 � . . . � λ N : eigenvalues of H N i is close to the free additive convolution µ A ⊞ µ B . We choose neither A nor B to be multiples of identity. 2

  3. Our questions Theorem [Voiculescu ’91] For any fixed interval I ⊂ R , | µ H ( I ) − µ A ⊞ µ B ( I ) | µ H ( I ) = |{ i : λ i ∈ I}| a.s. − − → 0 , N → ∞ . |I| N Alternative proofs [Speicher’93, Biane’98, Collins’03, Pastur-Vasilchuk’00] Question 1 (local law) Does the convergence still hold if |I| = o (1), and how 1 small can |I| be? ( Answer : N ) Question 2 (convergence rate) What is the convergence rate of � � 1 � µ H ( I ) − µ A ⊞ µ B ( I ) � ( Answer : N ) sup I⊂ R Question 3 (Spectral rigidity) What is the size of | λ i − γ i | where γ i is the N − i + 1-th N -quantile of µ A ⊞ µ B . 3

  4. Stieltjes transform Definition: For any probability measure µ , its Stieltjes transform m µ ( z ) is � 1 z ∈ C + . m µ ( z ) = λ − z d µ ( λ ) , Inverse formula: one to one correspondence between measure and its Stielt- jes transform: density of µ given by ρ ( E ) = 1 π lim η ↓ 0 Im m µ ( E + i η ) . Notation: For α = A, B, and A ⊞ B , we will use m α ( z ) to denote the Stieltjes � δ a i and transfrom of µ A , µ B and µ A ⊞ µ B , respectively. Note that for µ A = 1 N � δ b i , we have µ B = 1 N � � m A ( z ) = 1 1 m B ( z ) = 1 1 a i − z, b i − z. N N 4

  5. Analytic definition of free additive convolution Theoerm [Belinschi-Bercovici ‘06, Chistyakov-G¨ otze ‘05] There exist unique analytic ω A , ω B : C + → C + , s.t. ℑ ω k ( z ) � ℑ z and lim η ↑∞ ω k (i η ) = 1 i η for k = A, B , such that − [ m A ( ω B ( z ))] − 1 = ω A ( z ) + ω B ( z ) − z. m A ( ω B ( z )) = m B ( ω A ( z )) , • ω A ( z ) , ω B ( z ): subordination functions Let m ( z ) := m A ( ω B ( z )) = m B ( ω A ( z )). Claim : m ( z ) is a Stieltjes transform of a probability measure: µ A ⊞ µ B . • Algebraic definition: Addition of freely independent random variables [Voiculescu ‘86]. • Subordination phenomenon: [Voiculescu ‘93], [Biane ‘98]. 5

  6. examples semicircle ⊞ semicircle 0.2 0.2 = ⊞ 0.1 0.1 - 2 - 1 - 2 - 1 0 1 2 0 1 2 semicircle ⊞ Bernoulli 1 / 2 1 / 2 0.2 0.2 ⊞ = 0.1 0.1 - 2 - 1 0 1 2 - 3 - 2 - 1 0 1 2 3 - 1 1 6

  7. Bernoulli ⊞ Bernoulli 2 1 / 2 1 / 2 1 / 2 1 / 2 ⊞ = 1 - 2 - 1 0 1 2 - 1 1 - 1 1 three point masses ⊞ three point masses 3 1 / 2 1 / 4 1 / 2 1 / 4 1 / 4 1 / 4 2 ⊞ = 1 - 2 - 1 0 1 2 - 1 1 - 1 1 regular bulk: where the density is positive and finite regular edge: where the density vanishes as a square root 7

  8. Optimal local law for the regular bulk Assumption: � A � , � B � � C ; µ A ⇒ µ α , µ B ⇒ µ β ; µ α , µ β not one point mass Theorem [B-Erd˝ os-Schnelli ’15b] local law for Stieltjes transform � � 1 � � N − 1+ γ � η � 1 , � m H ( E + i η ) − m A ⊞ B ( E + i η ) � ≺ Nη, E ∈ bulk , where m H is the Stieltjes transform of µ H . ⇓ Theorem [B-Erd˝ os-Schnelli ’15b] local law for spectral distribution | µ H ( I ) − µ A ⊞ µ B ( I ) | 1 N − 1+ γ � |I| � 1 , ≺ N |I| , I ⊂ bulk |I| [Kargin’12] ( η � (log N ) − 1 / 2 ), [Kargin’15] ( η � N − 1 / 7 ), Previous works : os-Schnelli’15a] ( η � N − 2 / 3 ). [B.-Erd˝ Notation A ≺ B : | A | � N ε | B | with high probability for any given ε > 0. 8

  9. Extension to the edge: Assumption Assumption: � A � , � B � � C ; µ A ⇒ µ α , µ B ⇒ µ β (sufficiently fast), with µ α , µ β Jacobi type, i.e., µ α and µ β are a.c. with densities ρ α , ρ β supported on [ E α − , E α + ] and [ E β − , E β + ], respectively, and such that for some C � 1, ρ α ( x ) C − 1 � x ∈ [ E α − , E α + − x ) α + � C, a.e. + ] ( x − E α − ) α − ( E α ρ β ( x ) C − 1 � x ∈ [ E β − , E β + − x ) β + � C, a.e. + ] ( x − E β − ) β − ( E β with exponents − 1 < α ± , β ± < 1 . Theorem [B.-Erd˝ os-Schnelli ’18] Let µ α and µ β be of Jacobi type. Then supp µ α ⊞ µ β = [ E − , E + ] for some E − < E + ∈ R , and the density ρ α ⊞ β of µ α ⊞ µ β satisfies ρ α ⊞ β ( x ) C − 1 � � E + − x � C, a.e. x ∈ [ E − , E + ] . √ x − E − Similar problem was considered in [Olver-Nadakuditi ’12]. 9

  10. Extension to the edge: Results Assumption: � A � , � B � � C ; µ A ⇒ µ α , µ B ⇒ µ β (sufficiently fast), with µ α , µ β Jacobi type Theorem [B.-Erd˝ os-Schnelli ’16-’18] Under the above assumption (i)(local law) For any fixed γ > 0, and any compact interval I ⊂ R with |I| � N − 1+ γ , | µ H ( I ) − µ A ⊞ µ B ( I ) | 1 ≺ |I| N |I| (ii) (convergence rate) � � � ≺ 1 � µ H ( I ) − µ A ⊞ µ B ( I ) sup N I⊂ R (iii) (rigidity) For any i = 1 , . . . , N , | λ i − γ i | ≺ max { i − 1 3 , ( N − i + 1) − 1 3 } N − 2 3 10

  11. Local law of Green function Green function : G ( z ) := ( H − z ) − 1 , note � � m H ( z ) = 1 λ i − z = tr G ( z ) = 1 1 tr = 1 G ii ( z ) , N Tr . N N Theorem [B.-Erd˝ os-Schnelli ’16-’18] Let z = E + i η . Under the previous assumption, for any N − 1+ γ � η � 1 with any small γ > 0 (i) (Green function subordination) � � δ ij 1 � � max � G ij ( z ) − � ≺ √ Nη a i − ω B ( z ) i,j (ii) (Local law for Stieltjes transform) � � 1 � � � m H ( z ) − m A ⊞ B ( z ) � ≺ Nη (iii) (Improvement of (ii) outside the support) � � 1 � � � m H ( z ) − m A ⊞ B ( z ) κ := dist( E, ∂ supp( µ A ⊞ µ B )) � ≺ N ( κ + η ) , when E ∈ R \ supp( µ A ⊞ µ B ) and κ � N − 2 3 + ε . 11

  12. Local laws in RMT Local laws for Wigner type matrices were widely studied in the last ten years. A key difference for the additive model is the complicated dependence struc- ture of the entries of the Haar unitary. For the model discussed: Universality of local bulk eigenvalue statistics was proved in [Che-Landon ’17] Some reference (on optimal scale) • (Wigner type) [Erd¨ os-Schlein-Yau ’07-’09], [Tao-Vu ’09-’12], [Erd¨ os-Yau- Yin ’10-’12], [Erd¨ os-Knowles-Yau-Yin ’13], [G¨ otze-Naumov-Tikhomirov-Timushev ’16], [G¨ otze-Naumov-Tikhomirov ’15-’19],... • (Addition of Wigner type) [Lee-Schnelli ’13], [Knowles-Yin ’14], [He-Knowles- Rosenthal ’16], [Ajanki-Erd¨ os-Kr¨ uger ’16], [Erd¨ os, Kr¨ uger, Schr¨ oder, ’18]... • (Random d -regular graph) [Bauerschmidt-Knowles-Yau ’15]... 12

  13. Perturbed subordination equation for random matrix Subordination equation: Φ µ A ,µ B ( ω A ( z ) , ω B ( z ) , z ) = 0, where � � − ( m A ( ω 2 )) − 1 − ω 1 − ω 2 + z Φ µ A ,µ B ( ω 1 , ω 2 , z ) := − ( m B ( ω 1 )) − 1 − ω 1 − ω 2 + z Approximate subordination functions B ( z ) := z − tr UBU ∗ G ( z ) A ( z ) := z − tr AG ( z ) ω c ω c m H ( z ) , . m H ( z ) By ( A + UBU ∗ − z ) G = I , we have ( m H ( z )) − 1 = − ω c A ( z ) − ω c B ( z ) + z. Observe that   � � − 1 − � � − 1 m A ( ω c m H ( z ) B ( z ))      = Φ µ A ,µ B ( ω c A , ω c B , z )  � � − 1 − � � − 1 m B ( ω c m H ( z ) A ( z )) 13

  14. Denote by Λ i ( z ) := ω c i ( z ) − ω i ( z ) , i = A, B, In order to estimate Λ i ( z ), we need two ingredients: (i): A stability analysis of the equation Φ µ A ,µ B ( ω A ( z ) , ω B ( z ) , z ) = 0. (ii): An estimate of Φ µ A ,µ B ( ω c A , ω c B , z ) = (Φ c 1 , Φ c 2 ) T , where 1 = ( m H ) − 1 − ( m A ( ω c 2 = ( m H ) − 1 − ( m B ( ω c Φ c B )) − 1 , Φ c A )) − 1 . 14

  15. Local stability for subordination equation Expansion of the perturbed subordination eq. around ( ω A ( z ) , ω B ( z ) , z ) gives S Λ A + T A Λ 2 A + · · · = Φ c 1 + ( F ′ A ( ω B ) − 1)Φ c 2 S Λ B + T B Λ 2 B + · · · = Φ c 2 + ( F ′ B ( ω A ) − 1)Φ c 1 where F i ( · ) = − 1 /m i ( · ) , i = A, B are the negative reciprocal Stieltjes trans- forms, and � �� � F ′ F ′ S = A ( ω B ( z )) − 1 B ( ω A ( z )) − 1 − 1 � �� � � 2 + F ′′ � T A = 1 F ′′ F ′ F ′ A ( ω B ( z )) B ( ω A ( z )) − 1 B ( ω A ( z )) A ( ω B ( z )) − 1 2 and T B is defined analogously. Basic facts: � S ( z ) ∼ κ + η, T A ( z ) ∼ 1 , T B ( z ) ∼ 1 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend