scale up and process integration of municipal solid waste
play

Scale-Up and Process Integration of Municipal Solid Waste - PowerPoint PPT Presentation

Scale-Up and Process Integration of Municipal Solid Waste Conversion Process L. Liang, N. Sun, C. Li, Q. He, T. Luong, F. Xu, M. Somma, N. D'Alessio, V. Thompson, B. Simmons, S. Singh and T. Pray Ling Liang Lawrence Berkeley National


  1. Scale-Up and Process Integration of Municipal Solid Waste Conversion Process L. Liang, N. Sun, C. Li, Q. He, T. Luong, F. Xu, M. Somma, N. D'Alessio, V. Thompson, B. Simmons, S. Singh and T. Pray Ling Liang Lawrence Berkeley National Laboratory Advanced Biofuels/Bioproducts Process Demonstration Unit 1 ¡

  2. About Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) has been fully operational since 2012, collaborating with the Industry, National Labs and Academia to enable early stage advanced biofuels, biomaterials, and biochemicals product and process technologies to successfully scale from the lab to commercial relevance. Established by American Recovery and Reinvestment Act funds in 2009 – roughly $17 million invested in the 15,000 square foot demonstration Lab 2 ¡

  3. Facility at a Glance: Lab - to - Pilot Scale 3 ¡

  4. Technical Capabilities and Project Types 4 ¡

  5. Today’s Focus: Exploring Diversity of Starting Material ¡ Market ¡and ¡regulatory ¡policy ¡are ¡diversifying ¡across ¡renewable ¡feedstocks ¡ Other ¡ special ¡ material ¡ Producing: Alcohols § Organic acids § Hydrocarbons § Terpenes § Ketones § Fatty acids § Lipids § Proteins § Enzymes § Others … § ¡ 5 ¡

  6. CASE STUDY 1 Lignocellulose / Municipal Solid Waste Blends ¡ 6 ¡

  7. MSW Blends MSW in this study are non-recyclable: consisted of aseptic and polycoat containers and packaging, food soiled paper, shredded paper and waxed or coated papers and cardboard. The materials were hand sorted from black bag garbage entering a landfill by Cascadia Consulting in Seattle WA. • Advantages – Year-round availability – Low or negative cost – Collection infrastructure – Abundance and renewable • Disadvantages – Highly variable – Low quality • Sorting • Upgrading Source: ¡h@p://www.epa.gov/epawaste/nonhaz/municipal/index.htm ¡ 7 ¡

  8. Idaho National Lab’s Least-Cost-Formulation Output for Midwest MSW/CS Blends a) ¡Corn ¡Stover ¡ b) ¡CS:MSW ¡= ¡4:1 ¡ 70$/ton ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡80$/ton ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡>100$/ ¡ton ¡ DOE ¡target ¡ c) ¡CS:MSW ¡= ¡1:1 ¡ Sun et al., 2015, Bioresour Technol, 186: 200-206 MSW/CS blends have the great potential to meet the “cost target” 8 ¡

  9. MSW/CS Blends Compositions CS/MSW ¡raDo Ash ¡(%) Glucan ¡(%) Xylan ¡(%) Glucan+Xylan ¡(%) 10:0 3.0 33.2 20.8 50.8 9:1 3.8 35.5 19.7 55.2 8:2 4.6 37.7 18.6 56.3 7:3 5.4 40.0 17.6 57.6 6:4 6.2 42.2 16.5 58.7 5:5 7.0 44.5 15.4 59.9 0:10 10.9 50.8 10.0 60.8 MSW/CS blends have the great potential to meet “quality requirements” Sun et al., 2015, Bioresour Technol, 186: 200-206 9 ¡

  10. A Wider Range of Feedstock Screening Besides CS/MSW, more blends were studied at small scale : 16 Blends 2015 (%) No. Corn Stover Switchgrass Grass clippings MSW Abbr. 1 90 10 CG9:1 2 80 20 CG8:2 3 70 30 CG7:3 4 60 40 CG6:4 5 90 10 SG9:1 6 80 20 SG8:2 7 70 30 SG7:3 8 60 40 SG6:4 9 90 10 CS9:1 10 80 20 CS8:2 11 90 10 CM9:1 12 80 20 CM8:2 13 70 30 CM7:3 14 90 10 SM9:1 15 80 20 SM8:2 16 70 30 SM7:3 10 ¡

  11. Method: Ionic Liquid Acidolysis Process No ¡Solid/ IL ¡ Liquid ¡ Acidolysis ¡ Pretreatment ¡ SeparaOon ¡ One-Pot IL Process – Enzyme Free and Wash Free Sugar Extraction, IL and Lignin Recovery Universal Feedstock Utilization Sun et al., 2013, Biotechnology for Biofuels, 6:39 11 ¡

  12. Ionic Liquid Acidolysis Scale-up Process Flow IL Preheating in 10L Parr Reactor Mix IL and Biomass After IL Pretreatment Corn Stover/MSW 8:2 Blends Sugar Hydrolysate Lignin-rich product Basket Centrifugation Acidolysis/Incubation Product Recovery /Sampling 12 ¡

  13. Sugar Yield Summary Run Ionic Liquid Solid Loading T (°C)/t (h) Glucose Yield (%) Xylose Yield (%) Solid Recovery (%) 1 10 140/2 42.01 55.69 16.94 [C 4 C 1 Im]Cl 2 10 150/2 64.74 42.00 5.88 [C 4 C 1 Im]Cl 3 10 160/2 70.90 50.00 0.36 [C 4 C 1 Im]Cl 4 15 160/2 63.29 40.96 2.77 [C 4 C 1 Im]Cl 5 10 120/2 53.66 50.97 13.57 [C 4 C 1 Im]Cl 6 10 120/2 44.47 46.89 21.34 [C 2 C 1 Im]Cl 7 10 140/2 53.58 35.16 11.66 [C 2 C 1 Im]Cl 8 10 160/2 57.80 35.84 6.80 [C 2 C 1 Im]Cl • Feedstock: CS/MSW 8:2, Non-recycle paper mix • Ionic liquids: 1-Ethyl-3-methylimidazolium chloride ([C 2 C 1 Im]Cl) 1-Butyl-3-methylimidazolium chloride ([C 4 C 1 Im]Cl) 13 ¡

  14. Mass and Energy Balance [C 4 C 1 Im]Cl 3060 g 4N HCl 250 g H 2 O 2375 g Total Energy: 80.06 MJ Blends CS/MSW 8:2 Ionic Liquid Biomass/IL slurry Hydrolysate Solid/liquid Pretreatment and Separation 6 kg Acidolysis 106.8 g glucose 340 g biomass 45.2 g xylose 6.5 g HMF 135.6 g glucan Solid 4.6 g FF 74.7 g xylan washing 52.4 g lignin 52.9 g lignin 22.7 g ash 23.2 g ash Total Energy: 85.85 MJ Total Energy: 5.82 MJ 1.1 g Solid residue 0.05 g glucan 0.01 g xylan 0.54 g lignin 0.47 g ash • Overall glucan conversion =71% Total Energy: 0.034 MJ • Overall xylan conversion = 56% • Overall lignin recovery from solid stream = 1% 14 ¡

  15. Case 1 Summary • Successfully demonstrated 200-fold scale up of MSW blends IL acidolysis. • Developed an integrated process for ionic liquid based deconstruction technologies for MSW blends conversion. • The scale up attempt will leverage the opportunity towards a cost-effective MSW blends conversion technology. 15 ¡

  16. CASE STUDY 2 Post-consumer Absorbent Hygiene Products (AHPs) 16 ¡

  17. Case 2: The FATER – ABPDU Partnership • ABPDU has been developing and validating an integrated waste-to-energy process under a DOE Work-For-Others (WFO) Agreement with FATER. • Key outcomes indicate that post-consumer absorbent hygiene products (AHPs) can be readily and economically converted -- without using harsh or expensive pretreatment routes -- to sugars and fuel intermediates. 17 ¡

  18. Conversion of FATER MSW Unit Operation AHPs Collection Process Development Transport Pretreatment FATER MSW Techno- MSW Sterilization Economic Recycle Enzymatic Saccharification Analysis Plastic Separation Fermentation Patent Tech Scale Up Cellulose Recycle 18 ¡

  19. Thermochemical Pretreatment + Enzymes Defining the Deconstruction 15 ml Incoloy Tube Reactors Fluidized Sand Bath Routes • Dilute acid pretreatment : 1% sulfuric acid, 120°C, 15 min, 10% solid loading • Hydrothermal pretreatment : 120°C, 15 min, 10% solid loading 19 ¡

  20. Lab-scale Hydrolysis Process Optimization 80 8x Glucose 2x 4x 70 Sugar Concentration (g/L) Xylose 8x 60 50 4x 2x 1x 40 4x • Higher solid loading (dry 1x 2x 30 basis) resulted in higher sugar concentrations 20 10 • Larger enzyme dosage increased sugar yields 0 10% 10% 10% 15% 15% 15% 15% 20% 20% 20% Solid Loading (w/w) 20 ¡

  21. Bench-Scale Enzymatic Saccharification Efficient mixing key to reproducible, scalable hydrolysis of actual AHP materials 21 ¡

  22. Optimized Hydrolysis Performance at Bench Scale 80 Glucose Sugar Concentration (g/L) Glucose – IKA reactor 70 Xylose Xylose – IKA reactor Flask Glucose Glucose – shake flask Sugar Cconcentration (g/L) 60 Flask Xylose Xylose – shake flask e g 50 a s o d e m y z n E g n i s 40 a e r c n I 30 20 10 0 10% 10% 15% 15% Solid Loading (w/w) Solid Loading (w/w) • Enzymatic saccharification was scaled up 50 times • High consistency of sugar yield between flask scale and reactor was observed 22 ¡

  23. Case 2 Summary Two Potential Commercialization Routes • Feedstock – Enzyme-compatible cellulose-rich material for integration with cellulosic ethanol or chemical producers • Sugar product – Production of sugar monomers and packaging / distribution to users in traditional first-gen starch- and sugar-based fermentation manufacturers 23 ¡

  24. Working With Ø Sponsors can receive title or exclusive licenses to inventions and IP generated under “Work for Others” or “CRADA” contracting at ABPDU. Ø More than 30 FOA proposals developed in partnership with small businesses as leads - 18 projects awarded to-date … Bio-derived Product Diversity Bio-concept Funding & Grant Development & Proposals Support Validation Bio-process Scale-up Techno-economic Prototyping & Integration & analysis & Life Optimization Demonstration cycle analysis 24 ¡

  25. Acknowledgements • DOE EERE (Energy Efficiency and Renewable Energy) – BETO (BioEnergy Technologies Office) • Joint BioEnergy Institute • Idaho National Laboratory • Sandia National Laboratory • FATER Corporate – Founded in 1958 by Angelini. Since 1992, a joint-venture of Procter & Gamble and Angelini • Staff of ABPDU 25 ¡ 25

  26. THANK YOU Contact info Ling Liang – lliang@lbl.gov www.ABPDU.LBL.gov 26 ¡

  27. Small Scale Screening Results CM 8:2 2015 ¡MSW ¡16 ¡blends ¡sugar ¡yield ¡(Pret. ¡160 ¡°C ¡2h, ¡[C 2 C 1 Im]Cl) ¡ 65% glucose yield 91 % xylose yield 100 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Glu.yield% Xyl.yield% Ionic liquid - [C 2 C 1 Im]Cl: 1 -Ethyl-3-methylimidazolium chloride 27 ¡

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend