saturation in central forward jet production in p pb
play

Saturation in central-forward jet production in p-Pb collisions at - PowerPoint PPT Presentation

Saturation in central-forward jet production in p-Pb collisions at LHC Sebastian Sapeta IPPP, Durham in collaboration with Krzysztof Kutak, arXiv:1205.5035 pA@LHC Workshop, 4-8 June 2012 CERN Sebastian Sapeta (IPPP, Durham) Saturation in


  1. Saturation in central-forward jet production in p-Pb collisions at LHC Sebastian Sapeta IPPP, Durham in collaboration with Krzysztof Kutak, arXiv:1205.5035 pA@LHC Workshop, 4-8 June 2012 CERN Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 1 / 12

  2. Central-forward jet production P 1 forward jet p 2 k 1 , x 1 k 1 p 1 S = 2 P 1 · P 2 k 2 k 2 , x 2 central jet P 2 S ( p t 1 e y 1 + p t 2 e y 2 ) 1 = x 1 ∼ 1 √ y 1 ∼ 0 , y 2 ≫ 0 S ( p t 1 e − y 1 + p t 2 e − y 2 ) 1 = x 2 ≪ 1 √ Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 2 / 12

  3. High energy factorization d σ p t 1 p t 2 1 X 8 π 2 ( x 1 x 2 S ) 2 M ag → cd x 1 f a / A ( x 1 , µ 2 ) φ g / B ( x 2 , k 2 ) dy 1 dy 2 dp 1 t dp 2 t d ∆ φ = 1 + δ cd a , c , d k 2 = p 2 t 1 + p 2 t 2 + 2 p t 1 p t 2 cos ∆ φ x 1 f a / A ( x 1 , µ 2 ) – collinear pdf in A , suitable for x 1 ∼ 1 φ g / B ( x 2 , k 2 ) – unintegrated gluon distribution in B , suitable for x 2 ≪ 1 M ag → cd – matrix element with off-shell gluon Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 3 / 12

  4. Unified BK/DGLAP evolution equation [Kwieci´ nski, Martin, Sta´ sto; Kwieci´ nski, Kutak] kinematic constraint φ p ( x , k 2 ) = φ (0) p ( x , k 2 )  l 2 φ p ( x Z 1 z , l 2 ) θ ( k 2 Z ∞ z − l 2 ) − k 2 φ p ( x z , k 2 ) + k 2 φ p ( x z , k 2 ) + α s ( k 2 ) N c dl 2 ff dz | l 2 − k 2 | l 2 | 4 l 4 + k 4 | 1 π z k 2 x 2 0 Z 1 « Z k 2 Z 1 + α s ( k 2 ) + α s ( k 2 ) „ P gg ( z ) − 2 N c “ x “ x dl 2 φ p z , l 2 ” z , k 2 ” dz dz P gq ( z )Σ 2 π k 2 z 2 π k 2 x x 0 „ l 2 "„Z ∞ « 2 # − 2 α 2 s ( k 2 ) dl 2 Z ∞ dl 2 « l 2 φ p ( x , l 2 ) + φ p ( x , k 2 ) φ p ( x , l 2 ) l 2 ln R 2 k 2 k 2 k 2 proton radius Initial condition Z 1 α S ( k 2 ) dzP gg ( z ) x “ x 0 = 1GeV 2 ” φ (0) p ( x , k 2 ) z , k 2 = z g 2 π k 2 x N (1 − x ) β (1 − Dx ) xg ( x ) = Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 4 / 12

  5. Fits to F 2 6 HERA data 400 fit non-linear 300 fit linear 250 ◮ fit in range: x < 0 . 01, all Q 2 150 200 120 5 90 70 ◮ very good fit of non-linear gluon 60 ( χ 2 = 1 . 73) 45 35 4 ◮ fit of linear gluon has problems at 27 low Q 2 and low x ( χ 2 = 3 . 86) 22 18 15 12 3 F 2 10 8.5 6.5 2 4.5 3.5 2.7 2.0 1 1.5 0 0.0001 0.001 0.01 x Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 5 / 12

  6. Fits to F 2 6 HERA data 400 fit non-linear 300 fit linear 250 ◮ fit in range: x < 0 . 01, all Q 2 150 200 120 5 90 70 ◮ very good fit of non-linear gluon 60 ( χ 2 = 1 . 73) 45 35 4 ◮ fit of linear gluon has problems at 27 low Q 2 and low x ( χ 2 = 3 . 86) 22 18 15 12 3 F 2 10 ◮ some mechanism damping the 8.5 6.5 gluon density at low x and low Q 2 seems to be needed 2 4.5 3.5 ◮ strong preference of non-linear 2.7 2.0 evolution! 1 1.5 0 0.0001 0.001 0.01 x Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 5 / 12

  7. Unintegrated gluon distribution in proton non-linear gluon non-linear vs linear 3.0 12.0 x = 1e-02 non-linear x = 1e-03 linear x = 1e-04 2.5 10.0 x = 1e-05 x=10 -2 ...10 -5 8.0 2.0 p p 2 ) 2 ) φ p (x,k t φ p (x,k t 6.0 1.5 4.0 1.0 2.0 0.5 0.0 0.0 0.001 0.01 0.1 1 10 100 1000 0.001 0.01 0.1 1 10 100 1000 2 [GeV 2 ] k t 2 [GeV 2 ] k t k t > 1 GeV: gluon from the unified BK/DGLAP equation φ p ( x , k 2 ) = k 2 φ p ( x , 1 GeV 2 ) [non-linear] k t < 1 GeV: φ p ( x , k 2 ) = φ p ( x , 1 GeV 2 ) [linear] ◮ significant differences between linear and non-linear gluon at low k t and low x ◮ dynamically generated maximum of non-linear gluon at low x Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 6 / 12

  8. Central-forward dijets in p-p collisions at LHC ◮ Now we take all the ingredients (off-shell matrix element, collinear gluon, unintegrated gluon) and plug them to the high energy factorization formula 10 5 10 5 linear linear non-linear non-linear data CMS data CMS 10 4 10 4 d 2 σ /dp t d η c [pb/GeV] d 2 σ /dp t d η f [pb/GeV] CENTRAL FORWARD 10 3 10 3 10 2 10 2  s = 7 TeV  s = 7 TeV √ √ p t > 35 GeV p t > 35 GeV 10 10 central: | η | < 2.8 central: | η | < 2.8 forward: 3.2 < | η | < 4.7 forward: 3.2 < | η | < 4.7 1 1 40 60 80 100 120 140 40 60 80 100 120 140 central p t [GeV] forward p t [GeV] ◮ the result reproduces the pattern of CMS data ◮ excess at low p t is due to our simple modeling with a jet being just a parton; it is a know effect which can be improved by adding parton shower Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 7 / 12

  9. Modeling the nucleus ◮ Radius of nucleus R Pb = R A 1 / 3 ◮ Unintegrated gluon distribution φ Pb ( x , k 2 ) ≡ A φ Pb / A ( x , k 2 ) where φ Pb / A ( x , k 2 ) is the distribution of gluons per nucleon The evolution equation L 1 − A 1 / 3 » – φ Pb / A ( x , k 2 ) = ˆ R 2 ˆ • φ Pb / A ( x , k 2 ) L 2 ◮ ˆ L 1 , 2 – linear and non-linear operators as in the equation for proton ◮ for the nucleus the non-linear term is enhanced by A 1 / 3 Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 8 / 12

  10. Unintegrated gluon distribution in the Pb nucleus non-linear gluon in the proton non-linear gluon in Pb nucleus 3.0 3.0 x = 1e-02 x = 1e-02 x = 1e-03 x = 1e-03 x = 1e-04 x = 1e-04 2.5 2.5 x = 1e-05 x = 1e-05 2.0 2.0 2 ) p Pb 2 ) φ Pb/A (x,k t φ p (x,k t 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 0.001 0.01 0.1 1 10 100 1000 0.001 0.01 0.1 1 10 100 1000 2 [GeV 2 ] 2 [GeV 2 ] k t k t ◮ significant suppression of gluon density in the Pb nucleus wrt the proton at low and moderate k t ◮ gluon’s transverse momentum: k 2 t = p 2 t 1 + p 2 t 2 + 2 p t 1 p t 2 cos ∆ φ ◮ low and moderate k t probed by configurations with ∆ φ ∼ π Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 9 / 12

  11. Dijet azimuthal distance and rapidity distributions at 7 TeV 350 70 25 p-p linear p-p linear p-p linear p-p non-linear p-p non-linear p-p non-linear 300 60 p-Pb p-Pb p-Pb 20 250 50  s = 7 TeV  s = 7 TeV  s = 7 TeV √ √ √ d σ /d ∆φ [ µ b] p t > 15 GeV p t > 25 GeV 15 p t > 35 GeV d σ /d ∆φ [ µ b] d σ /d ∆φ [ µ b] 200 40 central: 0 < y < 2.8 central: 0 < y < 2.8 central: 0 < y < 2.8 forward: 3.2 < y < 4.7 forward: 3.2 < y < 4.7 forward: 3.2 < y < 4.7 150 30 10 100 20 5 50 10 0 0 2.5 2.6 2.7 2.8 2.9 3 3.1 2.5 2.6 2.7 2.8 2.9 3 3.1 2.5 2.6 2.7 2.8 2.9 3 3.1 ∆φ ∆φ ∆φ 2.5 p-p linear p-p linear 8 p-p linear 50 p-p non-linear p-p non-linear p-p non-linear p-Pb p-Pb 7 p-Pb 2.0 40 6 √  s = 7 TeV  s = 7 TeV √  s = 7 TeV √ p t > 15 GeV p t > 25 GeV 5 1.5 p t > 35 GeV d σ /dy [ µ b] d σ /dy [ µ b] d σ /dy [ µ b] 30 central: 0 < y < 2.8 central: 0 < y < 2.8 central: 0 < y < 2.8 4 forward: 3.2 < y < 4.7 forward: 3.2 < y < 4.7 forward: 3.2 < y < 4.7 1.0 20 3 2 0.5 10 1 0.0 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 y y y Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 10 / 12

  12. Dijet azimuthal distance at 5 and 8.8 TeV 300 70 25 p-p p-p p-p p-Pb p-Pb p-Pb 60 250 20  s = 5 TeV and 8.8 TeV  s = 5 TeV and 8.8 TeV  s = 5 TeV and 8.8 TeV √ √ √ 50 200 d σ /d ∆φ [ µ b] 15 d σ /d ∆φ [ µ b] d σ /d ∆φ [ µ b] 40 p t > 15 GeV p t > 25 GeV p t > 35 GeV 150 central: 0 < y < 2.8 central: 0 < y < 2.8 central: 0 < y < 2.8 30 10 forward: 3.2 < y < 4.7 forward: 3.2 < y < 4.7 forward: 3.2 < y < 4.7 100 20 5 50 10 0 0 2.5 2.6 2.7 2.8 2.9 3 3.1 2.5 2.6 2.7 2.8 2.9 3 3.1 2.5 2.6 2.7 2.8 2.9 3 3.1 ∆φ ∆φ ∆φ ◮ significant suppression due to saturation for both energies ◮ dip near ∆ φ ≃ π comes from ∼ k 2 behaviour of the unintegrated gluon at low k 2 ; hence ∆ φ distribution useful to test shape of gluon in this region Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 11 / 12

  13. Summary We presented analysis of e-p, p-p and p-Pb collisions in the framework of high energy factorisation – single approach which allows one to study saturation using hard final states ◮ We found that the above formalism with the unintegrated gluon density determined from from nonlinear QCD evolution equation can successfully account for features of e-p and p-p data Then we used the non-linear framework to estimate effects of gluon saturation in the nucleus ◮ We found that saturation in the Pb nucleus can manifest itself as a factor two suppression of central-forward jet decorrelation in the region ∆ φ ∼ π ◮ It also leads to ∼ 30% suppression of rapidity spectra Sebastian Sapeta (IPPP, Durham) Saturation in central-forward jet production in p-Pb collisions at LHC 12 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend