jet substructure at the lhc
play

Jet Substructure at the LHC Wouter Waalewijn LANL - January 8, 2015 - PowerPoint PPT Presentation

Jet Substructure at the LHC Wouter Waalewijn LANL - January 8, 2015 Outline Introduction Jet Charge Jet Mass Hadronization of Jets Quark/Gluon Discrimination Conclusions Introduction What is a Jet? Energetic quarks and


  1. Jet Substructure at the LHC Wouter Waalewijn LANL - January 8, 2015

  2. Outline • Introduction • Jet Charge • Jet Mass • Hadronization of Jets • Quark/Gluon Discrimination • Conclusions

  3. Introduction

  4. What is a Jet? Energetic quarks and gluons Produce jets of hadrons radiate and hadronize q q ¯ q q g g ¯ q q q g q g g g g g 4

  5. Jet Algorithms • Repeatedly cluster nearest “particles” p i , p j → p i + p j • Cut off by jet “radius” R distance = ( ∆ y ) 2 + ( ∆ φ ) 2 p T Azimuthal angle 2 o 15 o 90 o φ Rapidity y 5

  6. Jet Algorithms • Repeatedly cluster nearest “particles” p i , p j → p i + p j • Cut off by jet “radius” R • Default at LHC: anti- k T (Cacciari, Salam, Soyez) p T p T Azimuthal angle Azimuthal angle 2 o 15 o 90 o φ Rapidity φ Rapidity y y (arXiv:0802.1189) 6

  7. Jets at the LHC • Most measurements involve jets as signal or background 7

  8. Jet Cross Sections • Bin by jet multiplicity to improve background rejection 
 × 10 0 0 Events / bin Events/bin (b) All jets, e µ → 30 H → WW ATLAS Prelim. H WW* -1 ∫ � s = 8 TeV, L d t = 20.3 fb 20 Obs stat ± DY � Exp syst ± Top Higgs 10 VV � Misid WW 0 � 0 1 2 3 4 5 6 7 (ATLAS-CONF-2013-030) Number of jets n (ATLAS-CONF-2014-060) j • Large logarithms lead to large theory uncertainties no jets above this p T ln 2 p cut σ ( H + 0 jets) ∝ 1 − 6 α s T + . . . m H π (Berger, Marcantonini, Stewart, Tackmann, WW; Banfi, Monni, Salam, Zanderighi, Becher, Neubert, Rothen; Stewart, Tackmann, Walsh, Zuberi; Liu, Petriello; Boughezal, Focke, Li, Liu; Jaiswal, Okui, …)

  9. Jet Substructure for Boosted Objects • New heavy particles could produce boosted top, W, Higgs 
 decay products lie within one “fat” jet • Distinguish from QCD jets using jet substructure • Avoids combinatorial background Hadronic decay of top quark (ATLAS-CONF-2013-052) 9

  10. Top Tagging in Z 0 → t ¯ t 20 Efficiency [%] ) [pb] s = 8 TeV Obs. 95% CL upper limit Obs. 95% CL upper limit ATLAS Preliminary Simulation 18 3 10 Exp. 95% CL upper limit Exp. 95% CL upper limit s =8 TeV t -1 L dt = 14.3 fb t ∫ 16 Exp. 1 Exp. 1 uncertainty uncertainty → σ σ + jets, combined µ BR(Z’ Exp. 2 Exp. 2 σ σ uncertainty uncertainty + jets, boosted 2 14 µ 10 Leptophobic Z’ (LO x 1.3) Leptophobic Z’ (LO x 1.3) e + jets, combined 12 ATLAS Preliminary e + jets, boosted × 10 Z’ 10 σ 8 1 6 -1 10 4 2 -2 10 0 0 0.5 1 1.5 2 2.5 3 3.5 0.5 1 1.5 2 2.5 3 m [TeV] Z’ mass [TeV] t t (ATLAS-CONF-2013-052) b • One leptonic and one hadronic top ν Z 0 ¯ t ` • Boosted analysis crucial for large ¯ m Z 0 u d ¯ b 10

  11. Jet Substructure for Quark/Gluon Discrimination • New physics often more quarks than QCD backgrounds • Extensive Pythia study (Gallicchio, Schwartz) • Charged track multiplicity and jet “girth” are good 
 group of 5 Gluon Rejection Gluon Rejection best pair p i charge * girth 3 ( y i − y J ) 2 + ( φ i − φ J ) 2 X p 10 T girth = charged mult R=0.5 p J subjet mult R sub =0.1 Gluon Rejection � T girth R=0.5 i ∈ jet Gluon rejection optimal kernel 1st subjet R=0.5 avg k T of R sub =0.1 2 • More variables only give 
 10 mass/Pt R=0.3 decluster k T R sub =0.1 jet shape Ψ (0 . 1) marginal improvement | pull | R=0.3 planar flow R=0.3 10 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Quark Jet Acceptance Quark acceptance (arXiv:1106.3076) 11

  12. Events/0.14e ATLAS Preliminary Jet Mass and Charge 500 ∫ -1 s = 8 TeV, L dt = 5.8 fb + µ Data 2012 400 - Data 2012 µ =0.3 κ + MC@NLO t t µ - µ MC@NLO t t + Motivation: Background (MC) µ 300 - Background (MC) µ 200 • Measured at the LHC Data/MC 100 • Benchmark for our ability 
 0 0 -2 0 2 Jet charge [e] (ATLAS-CONF-2013-086) to calculate substructure • Test and improve Monte Carlo: 
 GeV ∫ ATLAS 1 -1 2010 Data, L = 35 pb 0.025 anti-k R=1.0 Herwig and Pythia differ Systematic unc. t d m σ d 300 < p < 400 GeV Total unc. T 0.02 N = 1, |y| < 2 1 σ Pythia PV Herwig++ 0.015 0.01 0.005 0.2 0 0 20 40 60 80 100 120 140 160 180 200 Jet mass [GeV] (arXiv:1203.4606)

  13. Jet Charge Krohn, Lin, Schwartz, WW (arXiv:1209.2421) 
 WW (arXiv:1209.3091)

  14. Defining Jet Charge (1 / σ ) d σ /dQ κ [e − 1 ] ⇣ p i Pythia ⌘ κ X T Q κ = Q i κ = 0 . 5 p J T i ∈ jet (Feynman, Field) Q κ [ e ] � • If too small: sensitive to soft hadrons contamination → κ • If too large: only sensitive to most energetic hadron 
 κ need more statistics 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend