richardson lucy deblurring for moving light field cameras
play

Richardson-Lucy Deblurring for Moving Light Field Cameras Donald - PowerPoint PPT Presentation

Richardson-Lucy Deblurring for Moving Light Field Cameras Donald Dansereau 1 , Anders Eriksson 2 and Jrgen Leitner 2,3 1 Stanford University, 2 Queensland University of Technology, 3 ARC Centre of Excellence for Robotic Vision CVPR:LF4CV


  1. Richardson-Lucy Deblurring for Moving Light Field Cameras Donald Dansereau 1 , Anders Eriksson 2 and Jürgen Leitner 2,3 1 Stanford University, 2 Queensland University of Technology, 3 ARC Centre of Excellence for Robotic Vision CVPR:LF4CV Workshop 2017 July 26

  2. 3D Motion Complicates Vision Scene-dependent nonuniform apparent motion 2 ComputationalImaging.org

  3. 3D is Easier in 4D We have 6-DOF virtual camera control Video Stabilization [video] http://pages.cs.wisc.edu/~lizhang/projects/lfstable/ [Smith2009] 3 ComputationalImaging.org

  4. 3D is Easier in 4D We can fix the camera’s position Closed-Form Change Detection Per-pix ixel l stil still- l-ca camera meth thods ● Change detection ● Tracking/segmentation ● Velocity & temporal filtering [dansereau2016] http://dgd.vision/Projects/LFChangeDet/ 4 ComputationalImaging.org

  5. 3D is Easier in 4D We can fix the camera’s position Closed-Form Change Detection Per-pix ixel l stil still- l-ca camera meth thods ● Change detection ● Tracking/segmentation ● Velocity & temporal filtering [dansereau2016] http://dgd.vision/Projects/LFChangeDet/ 5 ComputationalImaging.org

  6. 3D is Easier in 4D We can fix the camera’s position Closed-Form Change Detection Per-pix ixel l stil still- l-ca camera meth thods ● Change detection ● Tracking/segmentation ● Velocity & temporal filtering [dansereau2016] http://dgd.vision/Projects/LFChangeDet/ 6 ComputationalImaging.org

  7. 3D is Easier in 4D Lukas-Kanade optical flow generalizes to 6-DOF Linearize Apparent Motion Closed-form 6-DOF Odometry L x L y T r u e P l e n o p t i c P o i n t w i s e F e a t u r e 2 ) m ( − 2 z L y L x 1 0 1 4 1 2 5 1 0 0 8 − 5 6 4 − 1 0 y ( m ) x ( m ) 2 − 1 5 L z L z [Neumann2002, Dansereau2011, Dong2013] 7 ComputationalImaging.org

  8. 3D is Easier in 4D Lukas-Kanade optical flow generalizes to 6-DOF Linearize Apparent Motion Closed-form 6-DOF Odometry L x L y T r u e P l e n o p t i c P o i n t w i s e F e a t u r e 2 ) m ( − 2 z L y L x 1 0 1 4 1 2 5 1 0 0 8 − 5 6 4 − 1 0 y ( m ) x ( m ) 2 − 1 5 L z L z [Neumann2002, Dansereau2011, Dong2013] 8 ComputationalImaging.org

  9. Blur in 3D Scenes Convolution models blurring in 2D… Can we replace convolution with LF rendering in 3D scenes? 9 ComputationalImaging.org

  10. Related Work “Light Field Blind Motion Deblurring” [Srinivasan 2017] ● 3-DOF ● Insights on blur manifestation in LF ● Blind ● Modern optimization (ADAM) LF-RL ● Requires extension to be blind ● 6-DOF ● Proof of convergence to ML estimate (see paper) ● New LF equiparallax regularizer 10 ComputationalImaging.org

  11. Related Work “Richardson-Lucy Deblurring for Scenes under a Projective Motion Path” [Tai et al. 2011] 11 ComputationalImaging.org

  12. Richardson-Lucy Deblurring IN 12 ComputationalImaging.org

  13. Light Field Richardson-Lucy IN FWD BLUR REV BLUR Still LF 13 ComputationalImaging.org

  14. Light Field Richardson-Lucy IN FWD BLUR REV BLUR Still LF Simulated Motion 14 ComputationalImaging.org

  15. Light Field Richardson-Lucy IN FWD BLUR REV BLUR Still LF Simulated Motion Simulated Blur 15 ComputationalImaging.org

  16. Regularization Anisotropic total variation Favour textural edges [Goldluecke & Wanner 2013, Heber2013] Equiparallax Favour equal slopes in s,u and t,v 16 ComputationalImaging.org

  17. Rendered Results: Rot about y Ori riginal Ori riginal Ori riginal 17 ComputationalImaging.org

  18. Rendered Results: Rot about y Blurre Ori riginal red Ori Bl Blurre riginal red Ori Bl Blurre riginal red 18 ComputationalImaging.org

  19. Rendered Results: Rot about y Deblurre Blurre Ori riginal red rred Deblurr Ori Bl Blurre riginal red rred Deblurr Blurre Bl Ori riginal red rred 19 ComputationalImaging.org

  20. Rendered Results: Rot about z rotz Bl Blurre rred Bl Blurr rred Bl Blurr rred 20 ComputationalImaging.org

  21. Rendered Results: Rot about z rotz Bl Blurre Deblurre rred red Blurr Deblurre Bl rred rred Deblurre Bl Blurr rred rred 21 ComputationalImaging.org

  22. Rendered Results: Trans along x Bl Blurre rred Bl Blurr rred Bl Blurr rred 22 ComputationalImaging.org

  23. Rendered Results: Trans along x Bl Blurre Deblurre rred red Blurr Deblurre Bl rred rred Deblurre Blurr Bl rred rred 23 ComputationalImaging.org

  24. Rendered Results: Rot about z rotz Bl Blurre rred Bl Blurr rred Bl Blurr rred 24 ComputationalImaging.org

  25. Rendered Results: Rot about z rotz Bl Blurre Deblurre rred red Blurr Deblurre Bl rred rred Deblurre Bl Blurr rred rred 25 ComputationalImaging.org

  26. Rendered Results: Trans along z Bl Blurre rred Blurr Bl rred Bl Blurr rred 26 ComputationalImaging.org

  27. Rendered Results: Trans along z Deblurre Bl Blurre rred red Bl Blurr Deblurre rred rred Bl Blurr Deblurre rred rred 27 ComputationalImaging.org

  28. Rendered Results: Trans along z Deblurre Blurre Bl rred red Without Regulariza Bl Blurr Deblurre rred rred zation Without Regulariza Deblurre Blurr Bl rred rred zation 28 ComputationalImaging.org

  29. Results: Captured Quantitative Evaluation Repeatable camera motion Isolated dimensions Known magnitudes George 29 ComputationalImaging.org

  30. Validating Calibration & Rendering Still Camera calibration, rectification Metric blur simulation Metric robot motion Camera-to-robot calibration 30 ComputationalImaging.org

  31. Validating Calibration & Rendering Measured Still Blur Camera calibration, rectification Metric blur simulation Metric robot motion Camera-to-robot calibration 31 ComputationalImaging.org

  32. Validating Calibration & Rendering Simulated Blur Measured Still Blur Camera calibration, rectification Metric blur simulation Metric robot motion Camera-to-robot calibration 32 ComputationalImaging.org

  33. Validating Calibration & Rendering Simulated Blur Measured Still Still Blur Camera calibration, rectification Metric blur simulation Metric robot motion Camera-to-robot calibration 33 ComputationalImaging.org

  34. Results: Captured No increase in noise Large increase in sharpness Regularization is helping 34 ComputationalImaging.org

  35. Results: Captured Measured Blur 35 ComputationalImaging.org

  36. Results: Captured Measured Blur Deblurred 36 ComputationalImaging.org

  37. Results: Captured 37 ComputationalImaging.org

  38. Results: Captured 38 ComputationalImaging.org

  39. Results: Captured 39 ComputationalImaging.org

  40. Results: Captured 40 ComputationalImaging.org

  41. Results: Captured 41 ComputationalImaging.org

  42. Results: Captured 42 ComputationalImaging.org

  43. Summary & Future Work Generaliz lized co convolu lutio tional l blu lur usin sing LF Renderin ing Applied to RL deblurring 3D scenes, 6-DOF camera motion Proof of convergence to ML estimate Equiparallax regularization Next: Equiparallax regularization: applications Beyond 6-DOF, defocus Blind deblurring 43 ComputationalImaging.org

  44. Acknowledgments QUT HPC Group George 44 ComputationalImaging.org

  45. Light Field T oolbox for MATLAB Load Gantry and Lytro imagery Calibrate and rectify Lytro imagery Linear depth, volume fjlters Denoising: low-light, fog, dust, murky water Occluder removal: rain, snow, silty water LF Synth: Bare-Bones Rendering 45 ComputationalImaging.org

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend