resummation
play

Resummation Andrew Hornig LANL of Jet Rates Jan 1, 2016 In - PowerPoint PPT Presentation

Resummation Andrew Hornig LANL of Jet Rates Jan 1, 2016 In collaboration with Y. Chien, C. Lee (arXiv:1509.04287) What is a Jet? high-energy event: ?? = organizing principle (beyond fixed-order calculation)? What is a Jet?


  1. Resummation Andrew Hornig � LANL � of Jet Rates Jan 1, 2016 � In collaboration with Y. Chien, C. Lee (arXiv:1509.04287)

  2. What is a Jet? ❖ high-energy event: ?? = ❖ organizing principle (beyond fixed-order calculation)?

  3. What is a Jet? ❖ (soft & collinear) singularities ➝ organize through factorization � jet (coll. splittings) � � = + power � Soft corrections � � hard process � � ❖ can be achieved via Effective Field Theory (in particular, Soft- Collinear Effective Theory, or SCET)

  4. SCET & Factorization: Thrust ❖ thrust measures “jettiness” of e + e - events: � ˆ t R � L θ R i τ = τ L + τ R � � X E i cos θ L,R 1 − τ L,R L = i θ i i ∈ L,R � ❖ small thrust ⟹ all particles close to thrust axis (very jetty) � ❖ fixed order calculation not possible in this region: ln 3 τ ln 2 τ 1 d σ ln τ 1 ln τ ⇣ ⌘ ⇣ ⌘ + α 2 d τ = 1 + α s a 12 + a 11 τ + a 10 + a 22 + a 21 + a 20 + · · · a 23 s τ τ τ σ 0 τ

  5. SCET & Factorization: Thrust ❖ factorization: jet function � (coll. splittings) d σ d τ = H ∗ J n ⊗ J ¯ n ⊗ S n ¯ n + power � Soft corrections � hard function virtual coll. real soft real ❖ resummation via RGE: µ H = Q µ J = Q √ τ µ S = Q τ

  6. Factorization of Jet Rates ❖ “unmeasured jets” : tagged with algorithm but unprobed R E < Λ } record rate (count events) σ ( R, Λ ) ❖ “measured jets” : probed with mass, angularity, etc } “jet shapes” (not the jet shape Ψ (r/R)) 1 2 µ Ellis, Kunszt, Soper ’91, ‘92 E < Λ } d σ ( R ) µ bin in (e.g.) mass dm J m 2 J = ( p 1 + p 2 ) 2 µ µ

  7. Factorization of Jet Rates Ellis, AH, Lee, Vermilion, Walsh 1001.0014 ❖ “unmeasured jets” : tagged with algorithm but unproved R E < Λ } ? σ ( R, Λ ) = H ( Q ) ∗ J unmeas ( QR ) ∗ S unmeas ( R, Λ /Q ) ❖ “measured jets” : probed with mass, angularity, etc 1 2 µ E < Λ } d σ ( R ) µ ? = H ( Q ) ∗ J meas ( m J , R ) ∗ S meas ( R, Λ /Q, m J ) dm J valid for R << 1 µ µ

  8. 1 Jet Rates from Integrating Shapes to α s ❖ can get rates directly from integrating shapes: ⇣ Z τ max ( R ) ( τ = R 2 ) = 1 + α s C F � 8 ln R ln 2 Λ ⌘ ⇣ d τ d σ } σ cone Q � 6 ln R + 6 ln 2 � 1 ⇣ c 2 π σ ( R ) = d τ = ⌘ τ = R 2 + 5 � 2 π 2 = 1 + α s C F � 8 ln R ln 2 Λ ⌘ ⇣ ⌘ ⇣ σ k T Q � 6 ln R 0 c 3 4 2 π 2 π 2 ⌘ = H ∗ J meas ( τ , R ) ∗ S meas ( R, Λ /Q, τ ) = H ( Q ) ∗ J unmeas ( QR ) ∗ S unmeas ( R, Λ /Q ) Z τ max ( R ) note: � d τ J meas ( τ , R ) 6 = J unmeas ( QR ) 0 → part of S meas ( τ ) is needed (more later!) 8 Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

  9. Jet Shapes to α s1 ❖ jet function with a jet algorithm (R dependence needed!): J alg. ( t n , R, µ ) = J incl ( t n , µ ) + ∆ J alg. ( t n , R ) , n  + θ ( t � Q 2 R 2 ) t ⌘� ∆ J cone ( t, R ) = α s C F  6 ⇣ θ ( t ) θ ( Q 2 R 2 � t ) 4 ln Q 2 R 2 + 3 , t 4 π t + Q 2 R 2 2 2 ⇣ ⌘� � → power correction for τ << R, � but needed in general! ❖ soft function: h ⇣ 4 π 4 Λ − π 2 µ 2  θ ( k i ) µR � 2 α s C F 1 ln k i 1 + α s C F ⌘i h ⇣ X , S ( k n , k ¯ n , Λ , R, µ ) = δ ( k ) 4 ln R ln − 3 µR k i µR 4 π 4 Λ 2 R π + i = n, ¯ n } 2 ⌘i  � X part associated with veto: � minimized for μ ~ 2 Λ R 1/2 � CLUE?? 9 Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

  10. The α s2 Result Manteufell, Schabinger, Zhu 1309.3560 � µ + 8 π 2 � − 176 � � − 88 ln( r ) − 536 � K (2) ¯ 9 ln 3 TC ( τ ω , ω , r → 0 , µ ) = C A C F + 3 3 9 Q τ ω � µ + 56 ζ 3 + 44 π 2 � � � − 44 3 ln 2 ( r ) + 8 3 π 2 ln( r ) − 536 ln( r ) − 1616 × ln 2 + Q τ ω 9 9 27 � µ � µ − 44 π 2 � � − 44 3 ln 2 ( r ) − 8 3 π 2 ln( r ) + 536 ln( r ) � + 88 � × ln + ln 3 ln( r ) 9 9 2 ω Q τ ω × ln 2 � µ 3 + 88 π 2 � Q τ ω � � � � Q τ ω � − 8 − 16 ζ 3 − 8 + 4 � 3 π 2 ln 2 3 π 2 ln 2 ( r ) + ln 2 ω 2 r ω 9 2 r ω � µ − 268 ln 2 ( r ) + 109 π 4 − 1139 π 2 − 682 ζ 3 − 1636 � � 64 � 9 ln 3 + C F n f T F 9 9 45 54 81 Q τ ω � µ � µ � 16 ln 2 ( r ) − 16 π 2 � 32 ln( r ) � � � � + 160 + 160 ln( r ) + 448 ln 2 + + ln 3 9 Q τ ω 3 9 9 27 Q τ ω 3 ln( r ) ln 2 � µ � µ � 16 ln 2 ( r ) + 16 π 2 3 − 32 π 2 − 32 − 160 ln( r ) � � 16 � � � + ln + 2 ω 3 9 9 2 ω 9 + 80 ln 2 ( r ) + 218 π 2 � Q τ ω � � + 248 ζ 3 − 928 × ln (5.14) . 2 r ω 9 9 27 81 ❖ large logs at μ ~ 2 Λ R 1/2 ❖ “refactorization??” (but not clear any set of scales will work) 10 Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

  11. SCET + Bauer, Tackmann, Walsh, Zuberi 1106.6047 ❖ originally used for when jets get close: QCD QCD q 1 Q Q SCET q 1 √ SCET t SCET + q 3 q 3 ⇒ ⇒ m m soft + q 2 m 2 √ soft / t soft m 2 m 2 /Q /Q q 2 (a) All jets equally separated. (b) Two jets close to each other. ❖ requires a new “csoft” mode p cs ∼ Q ( λ 2 , η 2 , ηλ ) , = m η = λ λ = m t . Q . √ λ t 11 Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

  12. SCET + for Jet Rates ❖ we also fix small component and decrease ⊥ small R } p + = Q τ fixed by τ meas p = Q τ (1 , 1 /R 2 , 1 /R ) virtuality increased due to R! p ⊥ ∝ p − /R inside R (the jet) 12 Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

  13. The Soft-Collinear Mode (new!) O . p + p + g = p − g /R g = − 2 Λ sc ¯ n p + g = Rp − g s s p − sc n g 2 Λ soft but confined to jet � soft anywhere “soft-collinear” ( Λ , Λ , Λ ) Λ (1 , R 2 , R ) 13 Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

  14. ⬅ Re -Factorization } } µ H = Q Hard scale ∼ ( Q, Q, Q ) SCET+ Jet scale µ J = Q √ τ Q (1 , τ , √ τ ) Bauer, Tackmann, Walsh, Zuberi SCET ++ 1106.6047 ⇣ 1 µ S = Q τ /R Csoft scale R 2 , 1 , 1 ⌘ Q τ Chien, AH, Lee R 1509.04287 Global soft µ Λ = 2 Λ ( Λ , Λ , Λ ) (veto) scale depends on choice Soft-collinear of shape Λ (1 , R 2 , R ) Soft-collinear 
 µ sc = 2 Λ R mode (new!) scale radiation everywhere d σ d τ = H ( Q ) ∗ J meas ( τ , R ) ∗ S meas ( R, Λ /Q, τ ) w/ E ~ Λ radiation in jet w/ E ~ Λ S meas ( R, Λ /Q, τ ) → S in ( Q τ R ) S s ( Λ ) S c ( Λ R ) 14 Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

  15. Predicting the α s2 Result ⇣ α s ⌘ 2 S (2) S c ( k, Λ , R, µ ) = S C F ( k, Λ , R, µ ) + nA ( k, Λ , R, µ ) , 4 π ⌘ 2 ⇢ h ⇣ ⌘ i ⇣ α s 2( Γ 0 ) 2 ⇣ ⌘ 2 µ 2 − π 2 µ 2 S C F ( k, Λ , R, µ ) = 1 + α s − ln 2 µR − ln 2 µR 2 Γ 0 k + ln R ln + k + ln R ln 3 C F 4 Λ 2 R 4 Λ 2 R 4 π 4 π � ⇣ ⌘ 3 ( Γ 0 ) 2 ⇣ ⌘ π 2 k − ln R ln µ 2 − 4 π 2 ln 2 µR ln 2 µR 0 ln µR k + ln 2 R k + c (2) − 16 ζ 3 Γ 2 + 2 Γ 0 , (65) 3 C F C F 4 Λ 2 R ⇣ ⌘ ⇣ ⌘ µ 2 nA ( k, Λ , R, µ ) = 4 − ln 3 µR k + ln 3 µ µ − ln 2 µR S (2) 2 Λ − ln 3 + S c (2) + 2 Γ 1 k + ln R ln ng ( k, Λ , R, µ ) 3 Γ 0 β 0 4 Λ 2 R 2 Λ R in ) ln µR ss ) ln µ µ 2 Λ R + c (2) + 2( γ 1 in + 2 β 0 c 1 k + ( γ 1 ss + 2 β 0 c 1 2 Λ + 2( γ 1 sc + 2 β 0 c 1 sc ) ln nA . ❖ comparison to α 2 result ⇒ all logs of 2 Λ , 2 Λ R, and Q τ /R! ❖ this also gives the anom. dimensions to α 2 for free!! γ 1 ss = − 2 γ 1 in = − 2 γ 1 sc 27 T F n f − 2 π 2 h⇣ 1616 C A − 448 ⌘ i = C F − 56 ζ 3 . 3 β 0 27 (70) ❖ can argue to all orders (ingredients known to α 3 )!!! γ hemi = γ in = γ sc = − γ ss . 2 15 Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

  16. How the Modes Integrate ❖ complete EFT over all physical values of τ ⇣ 1 Csoft scale µ S = Q τ /R R 2 , 1 , 1 ⌘ Q τ R τ → τ max ∼ R 2 Jet scale Q (1 , τ , √ τ ) µ J = Q √ τ 16 Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

  17. Jet Rate Factorization (Proof) these modes coincide @ τ max ~ R 2 d σ d τ = H ( Q ) ∗ J meas ( τ , R ) ∗ S meas ( R, Λ /Q, τ ) S in ( Q τ R ) S s ( Λ ) S c ( Λ R ) ❖ now we have: σ ( R, Λ ) → H ( Q ) J unmeas ( QR ) S s ( Λ ) S c ( Λ R ) Z τ max ( R ) d τ J meas ( τ , R ) S in ( Q τ J unmeas ( QR ) = R ) 0 17 Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

  18. Plots ❖ reduced normalization and scale uncertainty: With s-c refactorization No s-c refactorization 1.0 1.0 R = 0 . 2 , Λ = 10 GeV , Q = 100 GeV 0.8 0.8 σ c ( τ , Λ , R ) 0.6 0.6 0.4 0.4 NLL NLL 0.2 0.2 NNLL NNLL R = 0 . 2 , Λ = 10 GeV , Q = 100 GeV 0.0 0.0 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 τ τ 18 Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

  19. Conclusions ❖ can resum logs or R with 2 additional modes: 2. soft-collinear mode (new) } SCET ++ 1. “csoft” mode of SCET + � ❖ all anomalous dimensions known to α 3 ❖ can integrate jet shapes to get jet rates 1. jet rate fact. thms now proven (with J unmeas ) � 2. understand relation of unmeas. and meas. funcs 19 Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend