representation theorems and the semantics of semi lattice
play

Representation theorems and the semantics of (semi)lattice based - PDF document

Representation theorems and the semantics of (semi)lattice based logics Viorica Sofronie-Stokkermans Max-Planck-Institut f ur Informatik Saarbr ucken Germany Overview Motivation Connection between different classes of mo


  1. Representation theorems and the semantics of (semi)lattice based logics Viorica Sofronie-Stokkermans Max-Planck-Institut f¨ ur Informatik Saarbr¨ ucken Germany

  2. Overview • Motivation • Connection between different classes of mo • Representation theorems • Examples • Decidability results • Automated theorem proving • Conclusions

  3. Motivation Logical consequence provability relation logical connective ⊢ → Residuation condition if and only if p, q ⊢ r p ⊢ q →

  4. Motivation. Premise combination Structural rules Γ , ∆ ⊢ A Γ , ∆ ⊢ A Γ , X Γ , Y, ∆ ⊢ A ∆ , Γ ⊢ A Γ , X (Weakening) (Exchange) (Contraction) Examples – Relevant logic weakening may not hold – Linear logic weakening, contraction do – Lambek calculus contraction, exchange do

  5. Motivation. Premise combination Logical consequence provability relation logical connective ⊢ → ≤ → Residuation condition if and only if φ, ψ ⊢ γ φ ⊢ ψ → [ φ ] ◦ [ ψ ] ≤ [ γ ] [ φ ] ≤ [ ψ ]

  6. Motivation. Premise combination Structural rules Γ , φ, ∆ ⊢ A Γ , φ, ψ, ∆ ⊢ A Γ , φ, Γ , ψ, φ, ∆ ⊢ A Γ , ψ, φ, ∆ ⊢ A Γ , φ, (Weakening) (Exchange) (Contraction) [ ψ ] ◦ [ φ ] ≤ [ φ ] [ φ ] ◦ [ ψ ] ≤ [ ψ ] ◦ [ φ ] [ φ ∆ , A, ∆ ′ ⊢ B ( φ 1 , φ 2 ) , φ 3 ⊢ A Γ ⊢ A ∆ , Γ , ∆ ′ ⊢ B φ 1 , ( φ 2 , φ 3 ) ⊢ A (Regrouping) (Cut) associativity of ◦ ≤ partial order; ◦ monotone

  7. Definitions ( M, ≤ ) poset; ◦ , → : M 2 → M → is the left residuation associated with ◦ if a ◦ b ≤ c iff → is the right residuation associated with ◦ if b ◦ a ≤ c iff Commutative: ( M, ≤ , ◦ , → , 1) left residuated monoid if x ◦ y = – ( M, ◦ , 1) monoid; ◦ monotone in all arguments Integral: – → left residuation associated with ◦ BCC -algeb ( M, ∨ , ∧ , ◦ , → ) left residuated lattice if – ( M, ∨ , ∧ ) lattice; ◦ join-hemimorphism in both arguments – → left residuation associated with ◦ .

  8. Examples Positive logics [Goldblatt 1974, Dunn 1995] Binary logics • no implication in the language φ ⊢ ψ • algebraic models: lattices with operators Logics based on Heyting algebras Post-style • algebraic models: Heyting algebras with operators p ∧ q ≤ r iff Logics based on residuated (semi)lattices � Lukasiewicz-st • algebraic models: residuated (semi)lattices with operato p ◦ q ≤ r iff

  9. Examples • positive logics [Dunn 1995] SLO LO • (modal) intuitionistic • G¨ odel logics [G¨ odel 1930] DLO • SH n , SHK n logics [Iturrioz RDO • Post logics and generalizations • modal logic, dynamic HAO • relevant logic RL [Urquha BAO • fuzzy logics G¨ odel, � Lukasiewicz, • BCC and related logics • Lambek calculus; linea

  10. � Motivation. Semantics Algebraic models ( A, D ) Var � � Fma ( Var Kripke-style models m : Var ( W, { R W } R ∈ Rel ) meaning Relational models algebras of relations

  11. Motivation. Decidability results Logical calculi ◦ Gentzen-style calculi ◦ natural deduction ◦ hypersequent calculi [Avron 1991] Semantics ◦ Algebraic semantics ◦ Kripke-style semantics ◦ Relational semantics Automated theorem proving ◦ embedding into FOL + resolution ◦ tableau methods ◦ natural deduction; labelled deductive systems

  12. Connections between classes of Algebraic models � � ������������������� � � � � representation theorems � representation � � � � � (algebras of sets) � (algeb � � � � � � � Kripke models Relational

  13. � � Algebraic and Kripke-style semantics Algebraic models Kripke-style models D (C) A R E (i) E ( K ) ⊆ P ( K ) algebra of subsets of K (ii) i : A → E ( D ( A )) injective homomorphism ( K, m ) K ∈ R ; m : Var → E ( K Kripke-style models r | = a Theorem If A , R satisfy (C)(i,ii) then A | = φ iff

  14. � � Algebraic and relational semantics Algebraic models Relational models D (C) A R E (i) E ( K ) algebra of relations (ii) i : A → E ( D ( A )) injective homomorphism K ∈ R ; f : Var → E ( K ( K, f ) Relational models a = | a Theorem If A , R satisfy (C)(i,ii) then = φ iff A |

  15. � Representation theorems Natural Dualities: V = ISP ( P ) A ∼ → Hom Rel ( D ( A ) , P ) P ’alter-ego’ D ( A ) � � �������������������� � � � � � � � � � � � � � � � � � Stone 1940: Bool = ISP ( B 2 ) Priestley 1972: D 01 → OF ( D ( L )) → P ( D ( B )) L ֒ B ֒ η L ( x ) = { F ∈ D ( L η B ( x ) = { F ∈ D ( B ) | x ∈ F } Semilattices: SL = ISP ( S 2 ) ( S, ∧ ) ֒ → ( SF ( D ( S )) , ∩ ) η S ( x ) = { F ∈ D ( S ) | x ∈ F } Lattices: η L : ( L, ∧ , ∨ ) ֒ → ( SF ( D ( L )) , ∩ , ∨ ) η L ( x ) := { F ∈ D ( L ) | x ∈ F }

  16. Example 1. Boolean algeb

  17. Example 2. Distributive lattices

  18. Example 3. Semilattices

  19. Example 4. Lattices

  20. Other representation theorems Boolean algebras with operators General Idea: • A �→ D ( A ) topological • J´ onsson and Tarski (1951) with additional Distributive lattices with operators • Goldblatt (1986), VS (2000) • A ∼ = ClosedSubsets Lattices (with operators) • Urquhart (1978) closed wrt: topological order structure • Allwein and Dunn (1993) ... • Dunn and Hartonas (1997) • operators �→ relations • Hartonas (1997) “Gaggles”, “tonoids” Dunn (1990, 1993)

  21. � � Representation theorems f A : A ε 1 × · · · × A εn → A ε join-hemimorphism f ∈ Σ ε 1 ...εn → ε : D D � Rp Σ � SLSp Σ DLO Σ SLO Σ E E R f ( F 1 , . . . , F n , F ) iff f ( F ε 1 1 , . . . , F εn n ) ⊆ F ε D ( A ) ( R − 1 ( U ε 1 1 , . . . , U εn n )) ε E ( X ) f R ( U 1 , . . . , U n ) = Example x ◦ y ≤ z iff x ≤ y → z has type + 1 , +1 → + 1 R ◦ ( F 1 , F 2 , F 3 ) iff F 1 ◦ F 2 ◦ R → ( F 1 , F 2 , F 3 ) iff F 1 → F c → has type + 1 , − 1 → − 1 2 R → ( F 1 , F 2 , F 3 ) iff R ◦ ( F 3 ,

  22. � � Algebraic and Kripke-style semantics D (C) A SLO E LO (i) E ( K ) ⊆ P ( K ) DLO algebra of subsets (ii) i : A ֒ → E ( D ( A RDO ( K, m ), m : Var → HAO r ( K, m ) | = x φ iff x ∈ BAO DLO Priestley rep η A : A → OF SLO , LO Representation (semi)lattices η A : A → S

  23. Logic Algebraic Kripke-style meaning models models DLO Σ Rp Σ m : V Positive ( L, ∨ , ∧ , 0 , 1 , { f } f ∈ Σ ) ( X, ≤ , { R } R ∈ Σ ) HAO Σ Rp Σ m : V Post-style ( L, ∨ , ∧ , ⇒ , 0 , 1 , { f } f ∈ Σ )( X, ≤ , { R } R ∈ Σ ) BAO Σ BAO Σ m : ( B, ∨ , ∧ , 0 , 1 , ¬ , { f } f ∈ Σ ) ( X, { R } R ∈ Σ ) RDO RSp m : V Lukasiewicz � -style ( L, ∨ , ∧ , 0 , 1 , ◦ , → ) ( X, ≤ , R ◦ ) RSO , RLO RSO , RLO m : V ( S, ∧ , 0 , 1 , ◦ , → ) ( X, ∧ , R ◦ ) ( S, ∨ , ∧ , 0 , 1 , ◦ , → ) ( X, ∧ , R ◦ )

  24. Overview • Motivation • Connection between different classes of mo • Representation theorems • Examples • Decidability results • Automated theorem proving • Conclusions

  25. Class u.w.p. References Lattices PTIME Skolem (1920), Burris decidable Blok, Van Alten (1999) ResLatMon decidable Blok, Van Alten (1999) ResLatIntMon decidable Blok, Van Alten (1999) BCK → Modular Lattices undecidable Freese (1980), Herrmann co-NP complete Bloniarz et al.(1987) D 01 DLO Σ , RDO Σ EXPTIME VS (1999, 2001) decidable Andreka DLSgr ∨ , d subclasses undecidable Urquhart (1995) Heyting Algebras DEXP VS (1999) undecidable Kurucz, Nemeti et al. HASgr ∨ , d Boolean Algebras co-NP complete Cook (1971) undecidable Kurucz, Nemeti et al. ResBoolMon undecidable Kurucz, Nemeti et al. BoolSgr ∨ , d decidable Gyuris (1992) BoolSgr ∨

  26. Decidability results Semantics • Algebraic semantics finite model property (uniform) word problem decidable • Kripke-style semantics finite model property embedding into decidable fragments devise sound and complete decision • Relational semantics relational proof systems Automated theorem proving ◦ embedding into FOL + ATP in first-order logic ◦ tableau methods ◦ natural deduction; labelled deductive systems

  27. Class u.w.p. References Lattices PTIME Skolem (1920), Burris decidable Blok, Van Alten (1999) ResLatMon decidable Blok, Van Alten (1999) ResLatIntMon decidable Blok, Van Alten (1999) BCK → Modular Lattices undecidable Freese (1980), Herrmann co-NP complete Bloniarz et al.(1987) D 01 DLO Σ , RDO Σ EXPTIME VS (1999, 2001) decidable Andreka DLSgr ∨ , d subclasses undecidable Urquhart (1995) Heyting Algebras DEXP VS (1999) undecidable Kurucz, Nemeti et al. HASgr ∨ , d Boolean Algebras co-NP complete Cook (1971) undecidable Kurucz, Nemeti et al. ResBoolMon undecidable Kurucz, Nemeti et al. BoolSgr ∨ , d decidable Gyuris (1992) BoolSgr ∨

  28. Resolution-based methods Advantages • direct encoding • restricted (hence efficient) calculi – ordering, selection – simplification/elimination of redundancies • allow use of efficient implementations (SPASS, Saturate) • in many cases better than equational reasoning AC operators �→ logical operations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend