renormalons in quantum mechanics
play

Renormalons in Quantum Mechanics Cihan Pazarba s Bo gazi ci - PowerPoint PPT Presentation

Renormalons in Quantum Mechanics Cihan Pazarba s Bo gazi ci University based on 1906.07198 collobration with Dieter Van den Bleeken 06.09.2019, ICTP Introduction Perturbative Series are generically divergent f ( ) = f n


  1. Renormalons in Quantum Mechanics Cihan Pazarba¸ sı Bo˘ gazi¸ ci University based on 1906.07198 collobration with Dieter Van den Bleeken 06.09.2019, ICTP

  2. Introduction • Perturbative Series are generically divergent f ( λ ) = � f n λ n ( f n ∼ A − n n ! ) • Borel summation − → Tame the divergence

  3. Introduction • Perturbative Series are generically divergent f ( λ ) = � f n λ n ( f n ∼ A − n n ! ) • Borel summation − → Tame the divergence � ∞ � ∞ d s e − s ˆ d s s n e − s n ! = = ⇒ f ( λ ) = f ( sλ ) 0 0 n ! ( sλ ) n = f ( sλ ) = � ∞ ˆ f n A n =0 A − sλ Im( s ) Im f ( λ ) = Res ( e − s ˆ f ( sλ )) | s = A/λ C + Re( s ) C − Choosing C + or C − results in complex conjugate results! − → Borel Ambiguity

  4. Introduction • Perturbative Series are generically divergent f ( λ ) = � f n λ n ( f n ∼ A − n n ! ) • Borel summation − → Tame the divergence (Ambigious) • Types of Divergences: Proliferation of Diagrams • Proliferation of number diagrams − → Tunneling B-ZJ • Borel Ambiguity ← cancellation Instanton/WKB Action − − − − − →

  5. Introduction • Perturbative Series are generically divergent f ( λ ) = � f n λ n ( f n ∼ A − n n ! ) • Borel summation − → Tame the divergence (Ambigious) • Types of Divergences: Proliferation of Diagrams • Proliferation of number diagrams − → Tunneling B-ZJ • Borel Ambiguity ← cancellation Instanton/WKB Action − − − − − → Loop Expansion • Remnant of renormalization process of loop • Borel Ambiguity − → ? � n ∼ d te − t t n ∼ n ! ln µ d k 2 k 2 � � � IR-Region: k 2 � n � d k 2 � d te − t t n ∼ n ! ln k 2 � UV Region: ∼ k 2 µ

  6. Introduction Renormalon Problems: • No resolution to Borel ambiguity! • No proof/conjecture that the divergence will survive or cancel out! Solution: • Simplify the problem → Find the simplest toy model • Try NR Quantum Mechanics?

  7. Introduction Renormalon Problems: • No resolution to Borel ambiguity! • No proof/conjecture that the divergence will survive or cancel out! Solution: • Simplify the problem → Find the simplest toy model • Try NR Quantum Mechanics? • Delta potentials for D ≥ 2 have UV divergence → Candidate for renormalons in QM!

  8. Introduction Renormalon Problems: • No resolution to Borel ambiguity! • No proof/conjecture that the divergence will survive or cancel out! Solution: • Simplify the problem → Find the simplest toy model • Try NR Quantum Mechanics? • Delta potentials for D ≥ 2 have UV divergence → Candidate for renormalons in QM! Outline: • Review of δ (2) ( x ) scattering. • Construction of Renormalons in QM. • Resolution of Renormalon ambiguity.

  9. Renormalization in QM Perturbative Scattering: S = S (0) − iT where T = V � ( GV ) n Consider 2-body scattering with V = δ (2) ( x, y ) � ∞ T (1) = λ 2 du 2 0 1 Loop: 4 π u 2 0 f − u 2 ren = λ 2 l ( E f ) 4 π log e iπ z T (1) 1 Renormalization: , l ( E f ) = µ

  10. Renormalization in QM Perturbative Scattering: S = S (0) − iT where T = V � ( GV ) n Consider 2-body scattering with V = δ (2) ( x, y ) � ∞ T (1) = λ 2 du 2 0 1 Loop: 4 π u 2 0 f − u 2 ren = λ 2 l ( E f ) 4 π log e iπ z T (1) 1 Renormalization: , l ( E f ) = µ Generalization to higher loops is immediate! . . . . . . . . . N-1 Loop: (Only diagram) ren = λ n ( l ( E f )) n − 1 Easy to sum! T ( n ) Renormalization:

  11. Renormalization in QM Perturbative Scattering: S = S (0) − iT where T = V � ( GV ) n Consider 2-body scattering with V = δ (2) ( x, y ) � ∞ T (1) = λ 2 du 2 0 1 Loop: 4 π u 2 0 f − u 2 ren = λ 2 l ( E f ) 4 π log e iπ z T (1) 1 Renormalization: , l ( E f ) = µ Generalization to higher loops is immediate! . . . . . . . . . N-1 Loop: (Only diagram) ren = λ n ( l ( E f )) n − 1 Easy to sum! T ( n ) Renormalization: • NP Bound State: E = − µe 4 π/λ λ T = • This mathces with exact solution 4 π (log E f 1 − λ µ + iπ ) • No Renormalon Integral

  12. Renormalons In Quantum Mechanics 4 Point Interaction . . . . . . • Renormalon Loop Exists • Particle number conserves • But still complicated

  13. Renormalons In Quantum Mechanics 4 Point Interaction . . . . . . • Renormalon Loop Exists • Particle number conserves • But still complicated Write the problem with a combinations of background potentials 3D Model: ∗− ⋆ − ⋆ − . . . − ⋆ −∗ H = P 2 2 + λ 0 δ 2 ( x, y ) + V ( x, y, z )

  14. Renormalons In Quantum Mechanics 4 Point Interaction . . . . . . • Renormalon Loop Exists • Particle number conserves • But still complicated Write the problem with a combinations of background potentials 3D Model: ∗− ⋆ − ⋆ − . . . − ⋆ −∗ H = P 2 2 + λ 0 δ 2 ( x, y ) + V ( x, y, z ) � E f − u 2 � � � � � � n � d 2 Q 2 T ( n +3) = λ ∗ d 2 Q n +3 � λ ∗ � du 2 log 2 − iπ (2 π ) 2 F ( P 2 , P n +3 ) � µ 2 (2 π ) 2 4 π u 2 = u n +3 ∗ renormalon integral ∼ n ! V ( P f − P n +3 ) ˜ ˜ V ( P 2 − P i ) • ( x, y, z ) → ( Q, u ) F ( P 2 , P n +3 ) = ( E f − E n +3 )( E f − E 2 )

  15. Renormalons In Quantum Mechanics 4 Point Interaction . . . . . . • Renormalon Loop Exists • Particle number conserves • But still complicated Write the problem with a combinations of background potentials 3D Model: ∗− ⋆ − ⋆ − . . . − ⋆ −∗ H = P 2 2 + λ 0 δ 2 ( x, y ) + V ( x, y, z ) � E f − u 2 � � � � � � n � d 2 Q 2 T ( n +3) = λ ∗ d 2 Q n +3 � λ ∗ � du 2 log 2 − iπ (2 π ) 2 F ( P 2 , P n +3 ) � µ 2 (2 π ) 2 4 π u 2 = u n +3 ∗ renormalon integral ∼ n ! • ( x, y, z ) → ( Q, u ) • This implies 3 rd direction leads to the renormalon integral

  16. Renormalons In Quantum Mechanics 4 Point Interaction . . . . . . • Renormalon Loop Exists • Particle number conserves • But still complicated Write the problem with a combinations of background potentials 3D Model: ∗− ⋆ − ⋆ − . . . − ⋆ −∗ H = P 2 2 + λ 0 δ 2 ( x, y ) + V ( x, y, z ) � E f − u 2 � � � � � � n � d 2 Q 2 T ( n +3) = λ ∗ d 2 Q n +3 � λ ∗ � du 2 log 2 − iπ (2 π ) 2 F ( P 2 , P n +3 ) � µ 2 (2 π ) 2 4 π u 2 = u n +3 ∗ renormalon integral ∼ n ! Questions • Does it survive in the full expansion? • Physical implication?

  17. Renormalons In Quantum Mechanics H = P 2 2 + λ 0 δ 2 ( x, y ) + V ( x, y, z ) V ( x, y, z ) = κδ ( z cos θ − y sin θ ) θ → 0 = ⇒ S θ =0 = S 2d S 1d − → No renormalon

  18. Renormalons In Quantum Mechanics H = P 2 2 + λ 0 δ 2 ( x, y ) + V ( x, y, z ) V ( x, y, z ) = κδ ( z cos θ − y sin θ ) θ → 0 = ⇒ S θ =0 = S 2d S 1d − → No renormalon ∗ − ⋆ − . . . − ⋆ − ∗ All Diagrams at Order κ 2 ⋆ − . . . − ⋆ −∗ − ⋆ − . . . − ⋆ −∗ � �� � � �� � a n − a ∗ − ⋆ − . . . − ⋆ −∗ − ⋆ − . . . − ⋆ � �� � � �� � n − a a ⋆ − . . . − ⋆ −∗ − ⋆ − . . . − ⋆ −∗ − ⋆ − . . . − ⋆ � �� � � �� � � �� � a n − a − b b

  19. Renormalons In Quantum Mechanics H = P 2 2 + λ 0 δ 2 ( x, y ) + V ( x, y, z ) V ( x, y, z ) = κδ ( z cos θ − y sin θ ) θ → 0 = ⇒ S θ =0 = S 2d S 1d − → No renormalon ∗ − ⋆ − . . . − ⋆ − ∗ All Diagrams at Order κ 2 ⋆ − . . . − ⋆ −∗ − ⋆ − . . . − ⋆ −∗ � �� � � �� � a n − a ∗ − ⋆ − . . . − ⋆ −∗ − ⋆ − . . . − ⋆ � �� � � �� � n − a a ⋆ − . . . − ⋆ −∗ − ⋆ − . . . − ⋆ −∗ − ⋆ − . . . − ⋆ + � �� � � �� � � �� � a n − a − b b � λ � n T n, 2 = 9 2(cos θ log cos 2 θ ) 2 κ 2 µ − 3 ( n − 3)! 2 6 π Standart Borel summation λ � λ � 2 θ = 0 2 (cos θ log cos 2 θ ) 2 κ 2 µ − 3 2 e − 6 π Im T 2 = ∓ 9 πi Ambiguity: − − − − → 0 6 π

  20. Resolution to Renormalon Ambiguity λ � λ � 2 2 (cos θ log cos 2 θ ) 2 κ 2 µ − 3 2 e − 6 π Im T 2 = ∓ 9 πi Ambiguity: 6 π • No need to cancel imaginary part! ( T ∈ C ) • Is there a “natural” sign?

  21. Resolution to Renormalon Ambiguity λ � λ � 2 2 (cos θ log cos 2 θ ) 2 κ 2 µ − 3 2 e − 6 π Im T 2 = ∓ 9 πi Ambiguity: 6 π • No need to cancel imaginary part! ( T ∈ C ) • Is there a “natural” sign? (YES!) dq f ( q ) l ( p 2 f − q 2 ) n − 1 λ n � → T = � Take a step back − n Here there are two options: 1. First integrate, then sum (what we’ve done) 2. First sum, then integrate (Observe we have a geometric series!) λ � T = dq f ( q ) f − q 2 ) − → Pole requires an analytical continuation 1 − λ l ( p 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend