recirculating flow 1
play

RECIRCULATING FLOW [1] Lars Davidson, www.tfd.chalmers.se/lada QLES - PowerPoint PPT Presentation

H OW TO ESTIMATE THE RESOLUTION OF AN LES OF RECIRCULATING FLOW [1] Lars Davidson, www.tfd.chalmers.se/lada QLES 2009, Pisa, 9-11 Sept H OW T O E STIMATE R ESOLUTION OF AN LES? In boundary layers there are guidelines ` a priori . The cells size


  1. H OW TO ESTIMATE THE RESOLUTION OF AN LES OF RECIRCULATING FLOW [1] Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept

  2. H OW T O E STIMATE R ESOLUTION OF AN LES? In boundary layers there are guidelines ` a priori . The cells size in the streamwise and spanwise direction should be approximately 100 and 30 respectively. First wall-adjacent node at y + ≃ 1. No guidelines in free-flow region (shear layers, re-circulation region . . . ) Worse: even after having carried out an LES, it is difficult to know if the resolution is good! I have recently made a similar study for channel flow [2] Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 2 / 34

  3. E NERGY S PECTRUM Energy spectrum -4 10 − 5 z / 3 ww 0 1 10 10 wavenumber Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 3 / 34

  4. E NERGY S PECTRUM AND T WO - POINT C ORRELATION Energy spectrum . . . K O -4 s 10 m − e e s 5 z / 3 ww 0 1 10 10 wavenumber Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 3 / 34

  5. E NERGY S PECTRUM AND T WO - POINT C ORRELATION Energy spectrum Two-point correlation 1 . . . K O 0.8 -4 s 10 m − e e s 5 0.6 z / 3 ww 0.4 0.2 0 0 1 10 10 0 0.1 0.2 0.3 0.4 wavenumber Separation distance in z Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 3 / 34

  6. E NERGY S PECTRUM AND T WO - POINT C ORRELATION Energy spectrum Two-point correlation 1 . . . K O 0.8 -4 s 10 m − e e s 5 0.6 z / 3 ww 0.4 ! D A B 0.2 s i t u b 0 0 1 10 10 0 0.1 0.2 0.3 0.4 wavenumber Separation distance in z Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 3 / 34

  7. E NERGY S PECTRUM VS TIME AND T WO - POINT C ORRELATION Energy spectrum Two-point correlation 1 -5 10 0.8 0.6 E ww ( f ) -6 10 0.4 -7 10 0.2 0 -8 10 -2 -1 0 10 10 10 0 0.1 0.2 0.3 0.4 Separation distance in z frequency, f N x = 256 , N z = 32 Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 4 / 34

  8. E NERGY S PECTRUM VS TIME AND T WO - POINT C ORRELATION Energy spectrum Two-point correlation 1 -5 10 0.8 0.6 E ww ( f ) -6 10 0.4 -7 10 0.2 0 -8 10 -2 -1 0 10 10 10 0 0.1 0.2 0.3 0.4 Separation distance in z frequency, f N x = 256 , N z = 32; N x = 512 , N z = 128 Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 4 / 34

  9. E NERGY S PECTRUM VS TIME AND T WO - POINT a r t c e p C ORRELATION s y g r e n e t Energy spectrum s Two-point correlation u r t t ’ n 1 o d -5 10 0.8 0.6 E ww ( f ) -6 10 0.4 -7 10 0.2 0 -8 10 -2 -1 0 10 10 10 0 0.1 0.2 0.3 0.4 Separation distance in z frequency, f N x = 256 , N z = 32; N x = 512 , N z = 128 Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 4 / 34

  10. P LANE A SYMMETRIC D IFFUSER (N OT TO S CALE ) y H Inlet x 4 . 7 H L 1 L 2 L L 1 = 7 . 9 H , L = 21 H , L 2 = 28 H . The spanwise width is z max = 4 H . • Mesh ( x × y × z ) 258 × 64 × 32, 258 × 64 × 64, 258 × 64 × 128 · 512 × 64 × 32, 512 × 64 × 64, 512 × 64 × 128 Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 5 / 34

  11. C OMPUTATIONAL M ETHOD Finite volume with central differencing in space and time (Crank-Nicolson) Fractional step Dynamic Smagorinsky model Inlet fluctuating boundary conditions: synthetic isotropic turbulence [3] All simulations run on a single CPU. Averaging during one week (the finest mesh: two weeks) Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 6 / 34

  12. � ¯ u � / U b , in PROFILES x = 3 6 14 17 20 24 H N x = 256 x = 3 6 14 17 20 24 H N x = 512 N z = 32; N z = 64; N z = 128; ◦ exp. [4]. Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 7 / 34

  13. � u ′ v ′ � / U 2 b , in PROFILES x = 3 6 13 16 19 23 H N x = 256 x = 3 6 13 16 19 23 H N x = 512 N z = 32; N z = 64; N z = 128; ◦ exp. [4]. Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 8 / 34

  14. � u ′ v ′ � / U 2 b , in PROFILES AT x = − H x = − H Attached flow N x = 256 N x = 512 1 1 0.8 0.8 ∆ x / ∆ z = 0 . 6 , 1 . 2 , 2 . 4 ∆ x / ∆ z = 0 . 3 , 0 . 6 , 1 . 2 0.6 0.6 y / H y / H 0.4 0.4 0.2 0.2 0 0 -2 -1 0 1 2 -2 -1 0 1 2 -3 -3 x 10 x 10 N z = 32; N z = 64; N z = 128 Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 9 / 34

  15. � u ′ v ′ � / U 2 b , in PROFILES AT x = 20 H Incipient separation x = 20 H N x = 256 N x = 512 1 1 ∆ x / ∆ z = 2 . 2 , 4 . 4 , 8 . 8 ∆ x / ∆ z = 1 . 1 , 2 . 2 , 4 . 4 0 0 -1 -1 y / H y / H -2 -2 -3 -3 -4 -4 -4 -3 -2 -1 0 1 -4 -3 -2 -1 0 1 2 -3 -3 x 10 x 10 N z = 32; N z = 64; N z = 128; ◦ exp. [4]. Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 10 / 34

  16. D IFFERENT W AYS TO E STIMATE R ESOLUTION Energy spectra (both in spanwise direction and time) Two-point correlations Ratio of SGS shear stress � τ sgs , 12 � to resolved � u ′ v ′ � Ratio of SGS viscosity, � ν sgs � to molecular, ν Energy spectra of SGS dissipation i /∂ x j and ∂ � ¯ Comparison of SGS dissipation due to ∂ u ′ u i � /∂ x j • Below we will only analyze results from the N x = 256 meshes Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 11 / 34

  17. E NERGY S PECTRA , T WO -P OINT C ORR . AT x = − H x = − H Attached flow Energy spectrum Two-point correlation 1 -4 10 − 5 / 3 0.8 0.6 z ww -5 10 0.4 0.2 0 -6 10 0 1 2 10 10 10 0 0.1 0.2 0.3 0.4 wavenumber, κ z Separation distance in z N z = 32; N z = 64; N z = 128. Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 12 / 34

  18. E NERGY S PECTRA , T WO -P OINT C ORR . AT x = 20 H Incipient separation x = 20 H Energy spectrum Two-point correlation 1 -4 10 0.8 − 5 / 3 0.6 z -6 ww 10 0.4 0.2 -8 10 0 0 1 2 10 10 10 0 0.5 1 1.5 2 wavenumber, κ z Separation distance in z N z = 32; N z = 64; N z = 128. Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 13 / 34

  19. E NERGY S PECTRA IN TIME . x = − 1 . x = − H Attached flow Two-point correlation Energy spectra in time 1 − 5 / 3 -5 10 0.8 ww ( ) -6 0.6 10 0.4 -7 10 0.2 0 -8 10 -2 -1 0 10 10 10 0 0.1 0.2 0.3 0.4 frequency, f Separation distance in z N z = 32; N z = 64; N z = 128. Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 14 / 34

  20. E NERGY S PECTRA IN TIME . x = 20 . Incipient separation x = 20 H Two-point correlation Energy spectra in time 1 − -4 10 5 / 0.8 3 E ww ( f ) 0.6 -6 10 0.4 -8 10 0.2 0 -10 10 -2 -1 0 10 10 10 0 0.5 1 1.5 2 frequency, f Separation distance in z N z = 32; N z = 64; N z = 128. Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 15 / 34

  21. SGS VS . R ESOLVED S HEAR S TRESSES x = − H x = 20 H -0.5 0.4 0.35 -1 0.3 -1.5 y / H 0.25 y / H -2 0.2 -2.5 0.15 0.1 -3 0.05 -3.5 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.01 0.02 0.03 0.04 0.05 � τ sgs , 12 � / � u ′ v ′ � � τ sgs , 12 � / � u ′ v ′ � N z = 32; N z = 64; N z = 128. Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 16 / 34

  22. SGS VS . M OLECULAR V ISCOSITY x = − H x = 20 H 1 1 0.8 0 0.6 -1 y / H y / H 0.4 -2 0.2 -3 0 -4 0 1 2 3 4 0 2 4 6 8 10 12 � ν sgs � /ν � ν sgs � /ν N z = 32; N z = 64; N z = 128. Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 17 / 34

  23. SGS VS . M OLECULAR V ISCOSITY , N x = 512 x = − H x = 20 H 1 1 0 0.8 -1 0.6 y / H y / H -2 0.4 -3 0.2 -4 0 1 1.5 2 2.5 3 3.5 0 2 4 6 8 10 � ν sgs � /ν � ν sgs � /ν N z = 32; N z = 64; N z = 128. Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 18 / 34

  24. D ISSIPATION E NERGY S PECTRA : T HEORY VS . R EALITY Theory Reality E ( κ ) E ( κ ) ε sgs ,κ ε sgs κ κ κ c κ c � κ c ε sgs = ε sgs ,κ ( κ ) d κ 0 Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 19 / 34

  25. A PPROXIMATED D ISSIPATION E NERGY S PECTRA At which wavenumber is the SGS dissipation largest? In the homogeneous direction, z , the SGS dissipation can be analyzed in the wavenumber space ε wz , can — in theory — be obtained from the two-point correlation [5] as N z �� ∂ w ′ � 2 � = 2 ν ∂ 2 B ww (ˆ z ) � � � κ 2 ε wz = 2 ν = 2 ν z E ww ( k z ) � ∂ ˆ z 2 ∂ z � z = 0 ˆ k z = 1 When the equations are discretized, the left side � = the right side z κ − 5 / 3 = κ 1 / 3 The right side gives ε wz ∝ κ 2 z E ww = κ 2 Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 20 / 34

  26. E XACT D ISSIPATION E NERGY S PECTRA A discrete Fourier transform of ∂ w ′ /∂ z is formed as N z ∂ w ′ ( n ) D z ( k z ) = 1 ˆ � ∂ z N z (1) n = 1 � � 2 π ( n − 1 )( k z − 1 ) � � 2 π ( n − 1 )( k z − 1 ) �� cos − ı sin N z N z where n is node number in z direction. Power Spectral Density (PSD) �� ∂ w ′ � 2 � N z N z � ∂ w ′ � � ˆ D z ∗ ˆ � � = D ∗ z � = PSD ∂ z ∂ z k z = 1 k z = 1 Lars Davidson, www.tfd.chalmers.se/˜lada QLES 2009, Pisa, 9-11 Sept 21 / 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend