mu2e at fermilab
play

Mu2e at Fermilab Ron Ray Fermilab - Mu2e Project Director Muon to - PowerPoint PPT Presentation

Mu2e at Fermilab Ron Ray Fermilab - Mu2e Project Director Muon to Electron Conversion Proton Beam Muonic Atom Stopping Proton Target Target Electrons Pions decay to Muons 105 MeV electron Signal Magnetic field Current


  1. Mu2e at Fermilab Ron Ray Fermilab - Mu2e Project Director

  2. Muon to Electron Conversion Proton Beam Muonic Atom Stopping Proton Target Target Electrons Pions decay to Muons 105 MeV electron Signal Magnetic field Current state-of-the-art % " & '(→# & '( % " & '( *+,-(.# < 7 x 10 -13 (90% CL) ! "# = W. Bertl, et al. (SINDRUM-II) Eur. Phys. J. C47 (2006) 337. 2 R. Ray - J-PARC Symposium

  3. Backgrounds Radiative Pion Capture • Prompt – e - nearly coincident with µ - arrival – Radiative Pion Capture (RPC) Target foils – Muon and pion decay-in-flight • Intrinsic – scale with the number of stopped muons – Decay-in-Orbit (DIO) • Recoil tail extends to conversion energy – Radiative Muon Capture (RMC) ! " #$ → &'() • • Cosmic Rays • Antiprotons 3 R. Ray - J-PARC Symposium

  4. Backgrounds Radiative Pion Capture • Prompt – e - nearly coincident with µ - arrival Pulsed – Radiative Pion Capture (RPC) beam + extinction Target foils – Muon and pion decay-n-flight • Intrinsic – scale with the number of stopped muons High – Decay-in-Orbit (DIO) resolution • Recoil tail extends to conversion energy Tracker – Radiative Muon Capture (RMC) ! " #$ → &'() • Active Veto • Cosmic Rays Pbar absorbers • Antiprotons 4 R. Ray - J-PARC Symposium

  5. Mu2e Production and Transport System Mu2e Project scope includes • Production target inside • The Mu2e apparatus superconducting solenoid § Superconducting Solenoids significantly enhances stopped Production Solenoid muon yield • • Collimation system selects muon Transport Solenoid • charge and momentum range Detector Solenoid • 10 10 Hz of stopped muons! • Technique demonstrated • by MμSIC Collaboration Production Target m a 1 T e B n o t 2.5 T o r P Detector Solenoid 4.6 T Transport Solenoid 2 T Production Solenoid End-to-end evacuated warm bore (10 -4 – 10 -5 Torr) Stopping Target 5 R. Ray - J-PARC Symposium

  6. Mu2e Detector Mu2e Project scope includes • The Mu2e apparatus § Superconducting Solenoids § Tracker – Straw drift tubes § Calorimeter – Pure CsI crystals 105 MeV electron m a 1 T e B n o t 2.5 T o r P Detector Solenoid 4.6 T Transport Solenoid 2 T Production Solenoid Calorimeter Tracker 6 R. Ray - J-PARC Symposium

  7. Mu2e Detector Mu2e Project scope includes • The Mu2e apparatus § Superconducting Solenoids § Tracker – Straw drift tubes § Calorimeter – Pure CsI crystals § Cosmic Ray Veto - Scintillator 7 R. Ray - J-PARC Symposium

  8. Making a Large Flux of Muons for Mu2e • 8 GeV protons from the Fermilab Booster – Booster batch of 4x10 12 protons g-2 at 15 Hz – re-bunched in the Recycler Ring to 4 bunches extracted one at a time to Delivery Ring – Protons resonantly extracted from the Delivery Ring – 1695 ns pulse spacing – ~40M protons per pulse • Mu2e can operate year round, simultaneous with NOvA and short baseline neutrino program – Cannot operate at the same time as g-2 8 R. Ray - J-PARC Symposium

  9. Pulsed Beam Eliminates Prompt Background Muons arrive Muonic atoms t µ (AL)=864 ns 1695 ns between proton pulses • Wait 700 ns before looking for signal while prompt background dies off • Extinction factor (out-of-time/in-time protons) < 10 -10 required • - AC Dipole driven by two harmonics – 300 kHz, 4.5 MHz - RF re-bunching in Recycler Ring 9 R. Ray - J-PARC Symposium

  10. Decay-in-Orbit Background DIO Spectrum Szafron & Czarnecki, Phys Rev. D94, 051301 (2016) Free muon decay n µ - Free muon e - n n µ - Conversion DIO DIO n signal Conversion e - electron energy Al 1 m µ 2 m µ Electron Energy 10 R. Ray - J-PARC Symposium

  11. Decay-in-Orbit Background Mu2e Simulation Requires Tracker core momentum Events/0.03 MeV/c resolution of 10 3 better than 200 KeV/c and small 10 2 tails. 10 1 10 -1 10 -2 10 -3 100 101 102 103 104 105 106 e- Momentum (MeV/c) 11 R. Ray - J-PARC Symposium

  12. Mu2e Tracker Metalized Straw Tube • 21,000 low mass straw tubes in vacuum 5 mm diameter, 15 µ m thick metalized • mylar walls 25 µ m tungsten wire at 1425 V • • 80:20 ArCO 2 Top half of Tracker Plane Instrumented Tracker Panel 12 R. Ray - J-PARC Symposium

  13. Mu2e Tracker Blind to peak of DIO spectrum • Blind to beam flash • Blind to > 99% of DIO spectrum 13 R. Ray - J-PARC Symposium

  14. Tracker Simulation • Simulation tuned to Tracker test beam data. • Expect to meet requirement. • Core resolution more than adequate. • Non-Gaussian tails evaluated by signal + DIO simulation with 1000x full run statistics. 14 R. Ray - J-PARC Symposium

  15. Calorimeter • Two annular disks separated by “half wavelength” • Each disk contains 674 pure CsI crystals (34 x 34 x 200 mm 3 ) read out by SiPMs – 75% of crystals, 100% of SiPMs in hand • Particle ID for cosmic muon rejection • Seed for tracking algorithm • Tracker-independent trigger • Calorimeter effort led by INFN E/p Simulation 15 R. Ray - J-PARC Symposium

  16. Calorimeter Beam Test • May 2017 with 50-115 MeV electrons at INFN Frascati • 51 30 x 30 x 200 mm 3 CsI Crystals, SiPM readout. Energy Resolution Energy and time resolutions well within requirements 16 R. Ray - J-PARC Symposium

  17. Cosmic Ray Backgrounds • Cosmic ray muons can generate background events via decay, scattering, or material interactions • Mu2e expects 1 signal-like event per day from cosmic rays • Total expected background from all sources is 0.4 events over entire run • To achieve design sensitivity, cosmic ray veto detection efficiency required to be > 99.99%. • Cosmic ray background can be measured between spills and when beam is off. 17 R. Ray - J-PARC Symposium

  18. Cosmic Ray Muon Background • Muons can elude Cosmic Ray Veto TS Hole and enter through the hole at the TS entrance • 10 times more than cosmic-induced electron background. • Suppressed by particle ID 18 R. Ray - J-PARC Symposium

  19. Mu2e Cosmic Ray Veto • 4-layers of extruded scintillator bars, wavelength shifting fibers, read out at both ends with SiPMs. – Scintillator and SiPMs all in hand. Covers all of DS, half of TS, better than 10 -4 inefficiency • 19 R. Ray - J-PARC Symposium

  20. CRV Beam Test CRV beam test with 120 GeV protons at Fermilab Test Beam. 20 R. Ray - J-PARC Symposium

  21. Sum of Backgrounds Estimated background for 3.6 x 10 20 protons on target 21 R. Ray - J-PARC Symposium

  22. Sensitivity Mu2e expects a 10 4 x increase in sensitivity over SINDRUM II Discovery Reach (5 s ): R µ e > 2 x 10 -16 • • Exclusion power (90% C.L.): R µ e > 8 x 10 -17 22 R. Ray - J-PARC Symposium

  23. Detector Hall - Completed 23 R. Ray - J-PARC Symposium

  24. Mu2e Status - PS/DS DS Stand DS1 coil winding PS3 coil winding completed. 2 layers, 125 turns/layer DS Cryostat DS1 coil winding complete. 2 layers, 73 turns/layer 24 R. Ray - J-PARC Symposium

  25. Mu2e Status - TS • S-shaped magnet constructed from series of wedge-shaped modules • Divided into upstream (TSu) and downstream (TSd) sections • Superconducting Modules fabricated in Italian industry • Delivered modules cooled to Liquid Helium and powered at Fermilab • Magnets assembled at Fermilab First two units installed on warm bore TS Assembly Space at HAB 25 R. Ray - J-PARC Symposium

  26. TSu Module 7 Module 5,6 Module 3,4 Module 1,2 Module 8 Module 2 Module 8 Module 3,4 Module 9 Module 12 More than half of TSu delivered Module 13 26 R. Ray - J-PARC Symposium

  27. TSd Module 16 - Rough machining completed Module 18 Module 21 - Rough machining completed Module 14 Module 22 Module 15 Module 23 Module 24 - Rough machining completed - Welding completed Module 25 Module 27 - Rough machining completed Module 20 - Rough machining ongoing Module 26 TSd modules in various stages of - Rough machining completed fabrication - Welding completed 27 R. Ray - J-PARC Symposium

  28. Mu2e Beamline Installation Making Significant Progress • Most beamline elements installed or being fabricated • Prototype AC Dipole fabricated and tested • Extinction collimators fabricated • Resonant extraction sextupoles fabricated • Begin running beam to dump next summer 28 R. Ray - J-PARC Symposium

  29. TDAQ Test Stand Detector Progress Cosmic Ray Veto Module Construction at University of Virginia Half Tracker Plane comprised of 3 panels Tracker panel production is behind schedule. Calorimeter crystals and SiPM (INFN Contribution) Expect to ramp up production rate this Fall at University of Instrumented Tracker Panel Minnesota 29 R. Ray - J-PARC Symposium

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend