reaction pathway analysis of the bio conversion of
play

Reaction Pathway Analysis of the (Bio)conversion of - PowerPoint PPT Presentation

Department of Chemical and Biological Engineering 1 Reaction Pathway Analysis of the (Bio)conversion of (Bio)macromolecules Linda J. Broadbelt Department of Chemical and Biological Engineering Northwestern University Department of Chemical


  1. Department of Chemical and Biological Engineering 1 Reaction Pathway Analysis of the (Bio)conversion of (Bio)macromolecules Linda J. Broadbelt Department of Chemical and Biological Engineering Northwestern University

  2. Department of Chemical and Biological Engineering 2 Multiscale modeling of chemical reactivity 10 4 s Continuum scale Reactor design Mechanism validation Time Mesoscale Reaction dynamics Molecular dynamics Atomic Scale Transition states Quantum effects Elementary reaction steps 10 -10 s > 10 -10 m >10 0 m Length

  3. Department of Chemical and Biological Engineering 3 10 4 s Continuum scale. Reactor design. Mechanism validation Time Mesoscale. Reaction dynamics. Molecular dynamics Atomic Scale. Transition states. Quantum effects. Elementary reaction steps 10 -10 s > 10 -10 m >10 0 m Length

  4. Department of Chemical and Biological Engineering 4 Thermochemical Catalysis Biocatalysis conversion

  5. Department of Chemical and Biological Engineering 5 Thermochemical Catalysis Biocatalysis conversion

  6. 6 How can we use non-food biomass to replace fossil fuels? Extraction Extraction Process Chemicals Chemicals Heat Gas Upgrading Upgrading Yield ~13% Transport Transport Gasification Gasification Fuels, etc. Fuels, etc. Liquid Liquid Biomass Fast Turbine Turbine Bio-Oil (switchgrass, Bio-Oil Pyrolysis stover, etc.) Yield ~75% Yield ~75% Electricity Electricity Engine Engine Solid Char Co-firing Co-firing Heat Heat Yield ~12% Pyrolysis Boiler Boiler Heat Charcoal Applications Bridgwater, A. V. Therm. Sci., 2004 , 8 , 21.

  7. 7 How can we model fast pyrolysis? Empirical k 2 Volatiles k 1 Active Cellulose Cellulose k 3 Char + Gases Shafizadeh, F. J. Anal. Appl. Pyrolysis 1982 , 3, 283. 0.95 Hydroxy-acethaldeyde + 0.25 Glyoxal + k 3 0.20 CH 3 CHO + 0.20 C 3 H 6 O + 0.25 5-HMF + 0.16 CO 2 + 0.23 CO + 0.1 CH 4 + 0.9 H 2 O + 0.61 Char Active k 1 Cellulose k 4 Cellulose Levoglucosan k 2 6Char + 5H 2 O Calonaci, M.; Grana, R.; Barker Hemings, E.; Bozzano, G.; Dente, M.; Ranzi, E. Energy Fuels 2010 , 24 , 5727.

  8. 8 Postulate mechanisms based on known products Exp. yields at 500 ° C: Cellulose Glycosidic bond Levoglucosan cleavage 59 wt% Retro Diels-Alder Glycolaldehyde reactions 6.7 wt% 1,2-Dehydration and 5-HMF hydrolysis + dehydration 2.8 wt% Cyclic Grob fragmentation, 2-Furaldehyde hydrolysis, dehydration 1.3 wt% 1,3-Dehydration, Formic acid subsequent elimination 6.4 wt% Condensation of C, CO, CO 2 , H 2 O, H 2 small fragments … Patwardhan, P.; Satrio, J. A.; Brown, Vinu, R.; Broadbelt, L. J. Energy R. C.; Shanks, B. H. J. Anal. Appl. Environ. Sci. 2012 , 5 , 9808. Pyrolysis 2009 , 86 , 323.

  9. 9 Kinetic parameters needed for every reaction Levoglucosan Glycosidic bond 59 wt% cleavage homolytic (multiple steps) ? (multiple steps) heterolytic Mayes, H. B.; Broadbelt, L. J. J. Phys. Chem. A 2012 , 116 , 7098.

  10. 10 New picture of cellulose unraveling OH • Quantum mechanics (Gaussian 09 rev B) OH H 3 C O HO O OH HO O O – DFT (M06-2X/6-311+G(3df,2p)//M06-2X/6-31+G(2df,p)) OH OH – Implicit solvent to model pyrolysis electrostatic environment • Transition-state-theory OH OH OH OH O O HO O HO O O HO O HO O O O OH OH OH OH Initiation OH OH OH O O O HO HO O O O + HO HO O HO O O OH OH OH OH Depropagation OH OH OH O O O HO HO O HO O + + HO HO O HO O O O OH OH OH Mayes, H. B. ; Broadbelt, L. J. J. Phys. Chem. A 2012 , 116 , 7098.

  11. 11 Validation • Kinetic parameters used in neat cellulose pyrolysis microkinetic model • Predicted levoglucosan yield compared to experiment Vinu R; Broadbelt LJ. Energy Environ. Sci. 2012 , 5, 9808-9826; Zhou X et al. Ind. Eng. Chem. Res. 2014 , 53, 13274 – 13289; Zhou X et al. Ind. Eng. Chem. Res. 2014 , 53, 13290 – 13301. Patwardhan, P. Satrio, J. A. Brown, R. C.; Shanks, B. H. J. Anal. Appl. Pyrolysis 2009 , 86 , 323.

  12. 12 Microkinetic model provides detailed product speciation Vinu R; Broadbelt LJ. Energy Environ. Sci. 2012 , 5, 9808-9826; Zhou X et al. Ind. Eng. Chem. Res. 2014 , 53, 13274 – 13289; Zhou X et al. Ind. Eng. Chem. Res. 2014 , 53, 13290 – 13301.

  13. 13 Microkinetic model further tracks species time evolution for cellulose pyrolysis at 500 ° C at 1 atm Vinu R; Broadbelt LJ. Energy Environ. Sci. 2012 , 5, 9808-9826; Zhou X et al. Ind. Eng. Chem. Res. 2014 , 53, 13274 – 13289; Zhou X et al. Ind. Eng. Chem. Res. 2014 , 53, 13290 – 13301.

  14. Department of Chemical and Biological Engineering 14 Thermochemical Catalysis Biocatalysis conversion

  15. 15 Extending the microkinetic model Experimental Results homolytic Levoglucosan - pyranose Glycolaldehyde ? Formic acid Levoglucosan - furanose Cellulose, Neat heterolytic Cellulose + 0.006 mmol Anhydro xylopyranose NaCl / g cellulose Cellulose 5-HMF Hemicellulose 0 10 20 30 40 50 60 Lignin wt % Yield Inorganic salts Patwardhan, P. R.; Satrio, J. A; Brown, R. C.; Shanks, B. H. Bioresour. Technol. 2010 , 101 , 4646.

  16. 16 Determine effect of Na + on select pyrolysis reactions 36 OH 6 E. O A. 17 O OH HO HO OH OH O ‒ H 2 O HO OH OH HO OH ‒ H 2 O 2 ‒ H 2 O ‒ H 2 O OH HO OH ‒ H 2 O O OH HO 5 6 17 OH 7 4 HO OH O ‒ H 2 O ‒ H 2 O OH O O O O ‒ H 2 O O HO HO OH HO HO OH O OH HO OH HO OH OH HO OH HO OH HO OH 35 OH OH HO OH HO OH ‒ H 2 O ‒ H 2 O 7 OH O OH ‒ H 2 O HO O O O 3 OH OH 10 OH HO OH ‒ H 2 O HO OH O O HO OH HO HO HO 34 33 HO ‒ H 2 O F. OH OH OH OH ‒ H 2 O ‒ H 2 O O ‒ H 2 O O HO HO O O 1 OH OH ‒ H 2 O OH 11 ‒ H 2 O 39 8 OH O O OH HO HO O O HO O O O ‒ H 2 O ‒ H 2 O HO HO HO HO OH O 12 ‒ H 2 O OH OH OH HO 8 9 HO O ‒ H 2 O OH HO OH ‒ H 2 O 7 OH O O O ‒ H 2 O HO ‒ H 2 O HO OH O O O O HO OH OH HO HO O O ‒ H 2 O 15 HO OH 13 14 38 37 OH HO OH G. OH O ‒ H 2 O HO O O O HO HO HO HO OH HO 16 OH 1 OH 40 OH D. C. 24 OH 29 OH 25 O 12 OH HO OH OH O B. ‒ H 2 O HO OH OH O O O HO HO HO HO HO O 23 OH OH OH HO HO OH HO 16 HO H O OH 32 ‒ H 2 O OH O OH 2 OH 41 HO ‒ H 2 O OH O HO O HO ‒ H 2 O ‒ H 2 O 42 43 ‒ H 2 O H. ‒ H 2 O OH OH HO ‒ H 2 O HO 2 O OH HO ‒ H 2 O 1 HO O OH OH OH OH O ‒ H 2 O OH 10 OH 3 OH OH O O O HO HO ‒ H 2 O HO HO O HO O HO OH OH HO HO HO OH HO ‒ H 2 O OH 15 OH HO OH OH 3 OH OH 28 OH OH OH OH OH ‒ H 2 O ‒ H 2 O ‒ H 2 O ‒ H 2 O O O ‒ H 2 O HO HO OH OH 44 OH 45 OH OH OH OH OH OH OH O HO HO 31 O O O HO ‒ H 2 O OH O O OH 27 OH HO HO O OH OH 30 HO 18 26 OH HO HO OH OH OH HO OH HO OH HO OH Mayes, H. B.; Nolte, M. W.; Beckham, G. T.; Shanks, B. H.; Broadbelt, L.J. ACS Catal., 2015 , 5 , 192. Mayes, H. B.; Tian, J.; Nolte, M. W.; Shanks, B. H.; Beckham, G. T.; Gnanakaran, S.; Broadbelt, L. J. J. Phys. Chem. B, 2014 , 118 , 1990.

  17. 17 Incorporation into kinetic model Key products wt% yields from pyrolysis with 0.00 to 0.34 mmol NaCl / g cellobiose levoglucosan CO 2 5-HMF Zhou, X.; Nolte, M. W.; Mayes, H. B.; Shanks, B. H.; Broadbelt, L. J. AIChE Journal , 2016 , 62(3), 766-777 and 778-791 .

  18. 18 Insight: Na + favoring competing dehydration reactions 18

  19. Department of Chemical and Biological Engineering 19 Thermochemical Catalysis Biocatalysis conversion

  20. 20 Metabolic Models Modeling as a key component of metabolic engineering toolbox R2 Reactions K A B …. R3 R1 R2 R3 R N R1 …. -1 -1 0 A D E C …. B 0 1 -1 N O C Metabolites …. L 2 0 0 D J M …. 0 0 1 E …. 0 0 1 I F … … … … S matrix H G R1: A  2C Maximize v product R2: A  B Subject to R3: B  D + E …. N · v = 0 Reaction N a i ≤ v i ≤ b i Contador, et al. Metabolic Engineering (2009) https://www.e-education.psu.edu/files/worldofweather/image/Section5/Katrina_track_gfs_ensemble_18Z_August27%20(Medium).png

  21. 21 Metabolic Models What can we model? Reaction Media Changes Heterologous Knockouts Expression E E E B B B A D A D A D P C C F F C F

  22. 22 Reaction Network (Mechanism) as Foundation of Metabolic Models •Reactants , intermediates D G 3 D G 1 k 3 k 2 and products k 1 D G 8 D G 6 D G 7 D G 5 •Reactions k 8 k 6 k 7 k 5 D G 4 D G 11 k 4 k 11 D G 12 •Thermodynamic parameters D G 13 D G 10 k 12 D G 14 k 13 k 10 k 14 D G 9 •Kinetic parameters k 9 D G 18 D G 15 k 18 k 15 D G 17 D G 16 k 16 k 17

  23. 23 Computer-Generated Reaction Networks to Fill Gaps or Identify Novel Reactions • Graph Theory D G 3 • Reaction Matrix D G 1 k 3 k 2 k 1 Operations • Connectivity D G 8 D G 6 D G 7 Reactants Scan D G 5 k 8 k 6 k 7 Reaction • Uniqueness k 5 D G 4 Types D G 11 Determination k 4 k 11 Reaction • Property D G 12 D G 13 D G 10 Rules k 12 Calculation D G 14 k 13 k 10 k 14 • Termination D G 9 k 9 D G 18 Criteria D G 15 k 18 k 15 D G 17 D G 16 k 16 k 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend