rbs and rbs nr to determine the
play

/ RBS and RBS / NR to determine the depth profile of atoms in the - PowerPoint PPT Presentation

. The use of nuclear methods RBS, ERD / RBS and RBS / NR to determine the depth profile of atoms in the subsurface layers of the solid state Agata Baraska University of Adam Mickiewicz, Pozna, Poland Dagmara Bentryn Nicolaus Copernicus


  1. . The use of nuclear methods RBS, ERD / RBS and RBS / NR to determine the depth profile of atoms in the subsurface layers of the solid state Agata Barańska University of Adam Mickiewicz, Poznań, Poland Dagmara Bentryn Nicolaus Copernicus University , Toruń, Poland Dimitar Stoychev Frank Laboratory of Neutron Physics University of Plovdiv „ Paisii Hillndarski ”, Bulgaria Supervisor: Mirosław Kulik UMCS Lublin Poland

  2. Table of contents 1. Physical basics of nuclear methods 2. Experiment and method of the study 2. RBS-Rutherford Backscattering 3. ERD-Elastic Recoil Detection 4. NR-Nuclear Reaction 5. Conclusion

  3. Physical basics of nuclear methods Hans Geiger Ernest Rutherford Series of experiments (Geiger-Marsden)conducted between 1908 and 1913 led to the discovery of nucleus. Ernest Marsden

  4. Experiment and experimental apparatus EG5 – van der Graaf accelerator Experimental apparatus(scheme) 1. Ion beam 2. Magnetic lenses and screen forming ion beam 3. Holder Ion source 4. Sample 5. Screen 6. Detector Dome- collects an electrostatic charge 7. Multichannel analizator 8. Computer

  5. RBS • Elastic collision between particle with the eneregy E o and stationary nucleus, • mirror surface • constant atomic density in layer • Rapid change of the density between two neigbouring layers (assumption) Simple model of scattering process Scheme of elastic collision

  6. Conservation of momenetum Conservation of kineti energy M V M V cos( ) M V cos( ) 2 2 2 1 o 1 1 2 2 M V M V M V 1 0 1 1 2 2 M V sin( ) M V sin( ) 0 2 2 2 1 1 2 2 Kinematical factor Energy of scattered projectile 2 2 2 2 M cos M M sin E kE 1 1 1 1 2 k 1 0 M M 1 2 Yield Y = σ( Ө , E) D Nt dΩ D- total numer of incydent ions Nt – concentration of atoms in the layer σ( Ө , E)- cross-section dΩ - solid angle

  7. 0 2 4 6 8 10 2000 simulated simulated experimental experiment [counts] experimental simulated [counts] =60 experimental [counts] simulated [counts] =30 Al Al 2000 1000 In In 0 0 1000 1500 2000 2500 1000 1500 2000 energy [keV] energy [keV] E α = 2028 keV ϴ =170 o C O 6 Al In 4 elements Graph1. The profile depth. 2 0 15 Atoms/cm 2 ] Depth [1*10

  8. simulated Nsurface experimental simulated experimental N surface 2000 Si substrate 30 3000 experimental [counts] Sisurface Si substrate simulated [counts] experimental [counts] simulated [counts] 1500 2000 Si surface E α = 2028 keV 1000 1000 ϴ =170 o 500 0 500 1000 1500 0 energy [keV] 500 1000 1500 2000 Spectrum: Agata Barańska energy [keV] 1250 simulated simulated experimental 3000 experimental 1000 2500 experimental [counts] simulated [counts] Al experimental [counts] simulated [counts] Al 2000 750 Sn 1500 E α = 2028 keV Sn 500 1000 ϴ =170 o 250 500 0 0 500 1000 1500 2000 2500 500 1000 1500 2000 2500 energy [keV] energy [keV] Spectrum: Dimitar Stoychev

  9. sample ERD Detector RBS Detector ERD 2 2 2 2 Simple model of M M cos M sin scattering process 1 1 1 1 2 k M M 1 2

  10. experimental simulated 15000 140 H 120 60 Bi 100 experimental [counts] Energy= 2297[keV] 80 yield [counts] experimental [counts] 10000 o =30 40 60 40 20 simulated 20 experimental 0 2000 2100 2200 2300 2400 2500 5000 energy [keV] 0 400 600 800 Energy [keV] 0 1000 2000 3000 energy [keV] sample St922 15 Concentartion [%] sample St922 H 0,3 Concentartion [%] 10 Bi E He + =2297 keV 0,2 5 E He + =2297 keV 0,1 0 0,0 0 1000 2000 3000 4000 15 [atoms/cm 2 ] Thickness 1x10 0 1000 2000 3000 4000 5000 15 [atoms/cm 2 ] Thickness 1x10

  11. 8 simulated sample 223 experimental Concentration [%] 30000 H 6 Yield [counts] 4 sample 223 15000 2 0 0 0 2000 4000 600 800 15 [atoms/cm 2 ] Thickness [1x10 Energy [keV] 100 60 Concentration [%] 80 Si 60 50 Concentration [%] O 60 40 50 sample 223 Concentration [%] 40 30 sample 223 Al 40 20 20 30 10 0 sample 223 6 20 0 0 2000 4000 6000 0 2000 4000 6000 10 15 [atoms/cm 2 ] Concentration [%] Thickness [1x10 N 15 [atoms/cm 2 ] 4 Thickness [1x10 0 sample 223 0 2000 4000 6000 The depth distribution of elements in the MOS structure 2 15 [atoms/cm 2 ] Thickness [1x10 0 Spectrum: Dagmara Bentryn 0 2000 4000 6000 15 [atoms/cm 2 ] Thickness [1x10

  12. 500 Hydrogen E He + =2297 keV Experimental Yield [counts] o 400 6000 =135 o O SiO 2 =75 yield [counts] 300 Si SiO 2 4000 200 Si SiO 2 2000 experimental 100 simulated 0 500 1000 1500 0 400 450 500 550 600 650 700 750 Energy [keV] Energy [keV] B 10 concenration [%] 5 Spectrum: Agata Barańska 0 0 2000 4000 15 /cm 2 ] Thickness [atoms 1x10

  13. RBS/NR . Yield depends on: • number of incident particles • atomic density of elements in the target • cross-section • solid angle 2 1 2 2 M cos 1 sin 1 M 2 2 2 Z Z e d 1 2 2 1 d 2 E sin ( ) 2 2 M 1 sin 1 Simple model of M 2 scattering process

  14. sample St404 60 Concentration [%] O 40 Fe Co Ag 20 0 0 100 200 300 400 500 15 [atoms/cm 2 ] Thickness [1x10

  15. Spectra: Dagmara Bentryn O surface 3000 E=3030keV o 30 2000 Si substrate o simulated 170 Si surface Spectrum: Agata Barańska 1000 0 1000 1500 energy (keV)

  16. Conclusions  Application of the classical description  The ability to identify impurities and their distributions  Layer thickness

  17. Thank you for your attention 

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend