rationality recognisability
play

Rationality & Recognisability An introduction to weighted - PowerPoint PPT Presentation

Rationality & Recognisability An introduction to weighted automata theory Tutorial given at post-WATA 2014 Workshop Jacques Sakarovitch CNRS / Telecom ParisTech Part I The model of weighted automata Part II Rationality Part III


  1. Rationality & Recognisability An introduction to weighted automata theory Tutorial given at post-WATA 2014 Workshop Jacques Sakarovitch CNRS / Telecom ParisTech

  2. Part I The model of weighted automata

  3. Part II Rationality

  4. Part III Recognisability

  5. Outline of Part III ◮ Representation and recognisable series. • KS Theorem ◮ The reachability space and the control morphism • The notion of action ◮ The observation morphism • The notion of quotient and the minimal automaton • The representation theorem ◮ The reduced representation • The exploration procedure • Decidability of equivalence for weighted automata

  6. Recognisable series A ∗ free monoid K semiring

  7. Recognisable series A ∗ free monoid K semiring K -representation µ : A ∗ → K Q × Q Q finite morphism µ : A ∗ → K Q × I ∈ K 1 × Q Q T ∈ K Q × 1 ( I , µ, T )

  8. Recognisable series A ∗ free monoid K semiring K -representation µ : A ∗ → K Q × Q Q finite morphism µ : A ∗ → K Q × I ∈ K 1 × Q Q T ∈ K Q × 1 ( I , µ, T ) � A ∗ � ( I , µ, T ) realises (recognises) s ∈ K � � ∀ w ∈ A ∗ � s , w � = I · µ ( w ) · T

  9. Recognisable series A ∗ free monoid K semiring K -representation µ : A ∗ → K Q × Q Q finite morphism µ : A ∗ → K Q × I ∈ K 1 × Q Q T ∈ K Q × 1 ( I , µ, T ) � A ∗ � ( I , µ, T ) realises (recognises) s ∈ K � � ∀ w ∈ A ∗ � s , w � = I · µ ( w ) · T � A ∗ � s ∈ K � � recognisable if s realised by a K -representation

  10. Recognisable series A ∗ free monoid K semiring K -representation µ : A ∗ → K Q × Q Q finite morphism µ : A ∗ → K Q × I ∈ K 1 × Q Q T ∈ K Q × 1 ( I , µ, T ) � A ∗ � ( I , µ, T ) realises (recognises) s ∈ K � � ∀ w ∈ A ∗ � s , w � = I · µ ( w ) · T � A ∗ � s ∈ K � � recognisable if s realised by a K -representation K Rec A ∗ ⊆ K � � A ∗ � � submodule of recognisable series

  11. Recognisable series A ∗ free monoid K semiring K -representation µ : A ∗ → K Q × Q Q finite morphism µ : A ∗ → K Q × I ∈ K 1 × Q Q T ∈ K Q × 1 ( I , µ, T ) � A ∗ � ( I , µ, T ) realises (recognises) s ∈ K � � ∀ w ∈ A ∗ � s , w � = I · µ ( w ) · T Example � 1 � � 1 � � 0 � � � 0 1 I = 1 0 µ ( a ) = µ ( b ) = T = , , , 0 1 0 1 1 � ∈ K Rec A ∗ ( I , µ, T ) realises | w | b w w ∈ A ∗

  12. Recognisable series K semiring M monoid K -representation µ : A ∗ → K Q × Q Q finite morphism µ : A ∗ → K Q × I ∈ K 1 × Q Q T ∈ K Q × 1 ( I , µ, T ) � A ∗ � ( I , µ, T ) realises (recognises) s ∈ K � � ∀ w ∈ A ∗ � s , w � = I · µ ( w ) · T

  13. Recognisable series K semiring M monoid K -representation µ : M → K Q × Q Q finite morphism I ∈ K 1 × Q µ : M → K Q × Q T ∈ K Q × 1 ( I , µ, T ) � A ∗ � ( I , µ, T ) realises (recognises) s ∈ K � � ∀ w ∈ A ∗ � s , w � = I · µ ( w ) · T

  14. Recognisable series K semiring M monoid K -representation µ : M → K Q × Q Q finite morphism I ∈ K 1 × Q µ : M → K Q × Q T ∈ K Q × 1 ( I , µ, T ) ( I , µ, T ) realises (recognises) s ∈ K � � M � � ∀ m ∈ M � s , m � = I · µ ( m ) · T

  15. Recognisable series K semiring M monoid K -representation µ : M → K Q × Q Q finite morphism I ∈ K 1 × Q µ : M → K Q × Q T ∈ K Q × 1 ( I , µ, T ) ( I , µ, T ) realises (recognises) s ∈ K � � M � � ∀ m ∈ M � s , m � = I · µ ( m ) · T s ∈ K � � M � � recognisable if s realised by a K -representation

  16. Recognisable series K semiring M monoid K -representation µ : M → K Q × Q Q finite morphism I ∈ K 1 × Q µ : M → K Q × Q T ∈ K Q × 1 ( I , µ, T ) ( I , µ, T ) realises (recognises) s ∈ K � � M � � ∀ m ∈ M � s , m � = I · µ ( m ) · T s ∈ K � � M � � recognisable if s realised by a K -representation K Rec M ⊆ K � � M � � submodule of recognisable series

  17. The key lemma A ∗ free monoid K semiring

  18. The key lemma A ∗ free monoid K semiring µ : A ∗ → K Q × Q defined by { µ ( a ) } a ∈ A arbitrary

  19. The key lemma K semiring M monoid µ : A ∗ → K Q × Q defined by { µ ( a ) } a ∈ A arbitrary

  20. The key lemma K semiring M monoid ? µ : M → K Q × Q defined by

  21. The key lemma A ∗ free monoid K semiring µ : A ∗ → K Q × Q defined by { µ ( a ) } a ∈ A

  22. The key lemma A ∗ free monoid K semiring µ : A ∗ → K Q × Q defined by { µ ( a ) } a ∈ A Lemma � µ : A ∗ → K Q × Q X = µ ( a ) a a ∈ A ∀ w ∈ A ∗ � X ∗ , w � = µ ( w )

  23. Automata are matrices a 2 a b C 1 p q b 2 b �� � a + b � � 0 �� � b C 1 = � I 1 , E 1 , T 1 � = 1 0 . , , 0 2 a + 2 b 1

  24. Automata over free monoids are representations a 2 a b C 1 p q b 2 b �� � a + b � � 0 �� � b C 1 = � I 1 , E 1 , T 1 � = 1 0 . , , 0 2 a + 2 b 1 � 1 � � 1 � 0 1 E 1 = a + b 0 2 0 2

  25. Automata over free monoids are representations a 2 a b C 1 p q b 2 b �� � a + b � � 0 �� � b C 1 = � I 1 , E 1 , T 1 � = 1 0 . , , 0 2 a + 2 b 1 � 1 � � 1 � 0 1 E 1 = a + b 0 2 0 2 � 1 � � 1 � 0 1 C 1 = ( I 1 , µ 1 , T 1 ) µ 1 ( a ) = µ 1 ( b ) = , 0 2 0 2

  26. Automata over free monoids are representations a 2 a b C 1 p q b 2 b �� � a + b � � 0 �� � b C 1 = � I 1 , E 1 , T 1 � = 1 0 . , , 0 2 a + 2 b 1 � 1 � � 1 � 0 1 E 1 = a + b 0 2 0 2 � 1 � � 1 � 0 1 C 1 = ( I 1 , µ 1 , T 1 ) µ 1 ( a ) = µ 1 ( b ) = , 0 2 0 2 � C 1 = I 1 · E 1 ∗ · T 1 = ( I 1 · µ 1 ( w ) · T 1 ) w w ∈ A ∗

  27. Automata over free monoids are representations a 2 a b C 1 p q b 2 b �� � a + b � � 0 �� � b C 1 = � I 1 , E 1 , T 1 � = 1 0 . , , 0 2 a + 2 b 1 � 1 � � 1 � 0 1 E 1 = a + b 0 2 0 2 � 1 � � 1 � 0 1 C 1 = ( I 1 , µ 1 , T 1 ) µ 1 ( a ) = µ 1 ( b ) = , 0 2 0 2 � C 1 = I 1 · E 1 ∗ · T 1 = C 1 ∈ K Rec A ∗ ( I 1 · µ 1 ( w ) · T 1 ) w w ∈ A ∗

  28. Automata over free monoids are representations a 2 a b C 1 p q b 2 b �� � a + b � � 0 �� � b C 1 = � I 1 , E 1 , T 1 � = 1 0 . , , 0 2 a + 2 b 1 � 1 � � 1 � 0 1 E 1 = a + b 0 2 0 2 � 1 � � 1 � 0 1 C 1 = ( I 1 , µ 1 , T 1 ) µ 1 ( a ) = µ 1 ( b ) = , 0 2 0 2 Conversely, representations are automata

  29. The Kleene-Sch¨ utzenberger Theorem Fundamental Theorem of Finite Automata and Key Lemma yield

  30. The Kleene-Sch¨ utzenberger Theorem Fundamental Theorem of Finite Automata and Key Lemma yield Theorem K Rec A ∗ = K Rat A ∗ A finite ⇒

  31. The Kleene-Sch¨ utzenberger Theorem Fundamental Theorem of Finite Automata and Key Lemma yield Theorem K Rec A ∗ = K Rat A ∗ A finite ⇒ standard key lemma K WA ( A ∗ ) K Rat A ∗ K RatE A ∗ K Rec A ∗ elimination

  32. Action of a monoid on a set

  33. The reachability set A = ( I , µ, T )

  34. The reachability set A = ( I , µ, T ) Reachability set Reachability space R A = { I · µ ( w ) | w ∈ A ∗ } R A ⊆ K Q � � � R A � � �

  35. The reachability set A = ( I , µ, T ) Reachability set Reachability space R A = { I · µ ( w ) | w ∈ A ∗ } R A ⊆ K Q � � � R A � � � A ∗ acts on R A : ( I · µ ( w )) · a = ( I · µ ( w )) · µ ( a ) = I · µ ( w a )

  36. The reachability set A = ( I , µ, T ) Reachability set Reachability space R A = { I · µ ( w ) | w ∈ A ∗ } R A ⊆ K Q � � � R A � � � A ∗ acts on R A : ( I · µ ( w )) · a = ( I · µ ( w )) · µ ( a ) = I · µ ( w a ) This action turns � R A into a deterministic automaton A (possibly infinite)

  37. The reachability set C 1 = ( I 1 , µ 1 , T 1 ) � � 1 7 b � C 1 � � 7 1 3 b � � 3 a 1 6 � � 6 1 1 b 1 0 � � � � 1 1 0 1 5 b a � � 5 1 2 a � � 2 a 1 4 4

  38. The reachability set A = ( I , µ, T ) Reachability set Reachability space R A = { I · µ ( w ) | w ∈ A ∗ } R A ⊆ K Q � � � R A � � � � R A is turned into a deterministic automaton A

  39. The reachability set A = ( I , µ, T ) Reachability set Reachability space R A = { I · µ ( w ) | w ∈ A ∗ } R A ⊆ K Q � R A � � � � � � R A is turned into a deterministic automaton A � If K = B , A is the (classical) determinisation of A

  40. The reachability set A = ( I , µ, T ) Reachability set Reachability space R A = { I · µ ( w ) | w ∈ A ∗ } R A ⊆ K Q � � � R A � � � � R A is turned into a deterministic automaton A � If K = B , A is the (classical) determinisation of A � If K is locally finite , R A and A are finite.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend