rationality of groups and centers of integral group rings
play

RATIONALITY OF GROUPS AND CENTERS OF INTEGRAL GROUP RINGS Andreas - PowerPoint PPT Presentation

RATIONALITY OF GROUPS AND CENTERS OF INTEGRAL GROUP RINGS Andreas Bchle Groups St Andrews 2017 1 NOTATION. G finite gr oup Z G integral group ring of G U ( Z G ) group of units of Z G 2 CONTENTS 1. Rationality of Groups 2. Centers of


  1. RATIONALITY OF GROUPS AND CENTERS OF INTEGRAL GROUP RINGS Andreas Bächle Groups St Andrews 2017 1

  2. NOTATION. G finite gr oup Z G integral group ring of G U ( Z G ) group of units of Z G 2

  3. CONTENTS 1. Rationality of Groups 2. Centers of Integral Group Rings 3. Solvable Groups 4. Frobenius Groups 5. References 3

  4. CONTENTS 1. Rationality of Groups 2. Centers of Integral Group Rings 3. Solvable Groups 4. Frobenius Groups 5. References 4

  5. x ∈ G . DEFINITIONS . 5

  6. x ∈ G . DEFINITIONS . : x j ∼ x : ⇔ ∀ j ∈ Z x rational in G ( j , o ( x ))= 1 5

  7. x ∈ G . DEFINITIONS . : x j ∼ x : ⇔ ∀ j ∈ Z x rational in G ( j , o ( x ))= 1 : x j ∼ x x j ∼ x m : ⇔ ∃ m ∈ Z ∀ j ∈ Z x semi-rational in G or ( j , o ( x ))= 1 5

  8. x ∈ G . DEFINITIONS . : x j ∼ x : ⇔ ∀ j ∈ Z x rational in G ( j , o ( x ))= 1 : x j ∼ x x j ∼ x m : ⇔ ∃ m ∈ Z ∀ j ∈ Z x semi-rational in G or ( j , o ( x ))= 1 : x j ∼ x or x j ∼ x − 1 x inverse semi-rational in G : ⇔ ∀ j ∈ Z ( j , o ( x ))= 1 5

  9. x ∈ G . DEFINITIONS . : x j ∼ x : ⇔ ∀ j ∈ Z x rational in G ( j , o ( x ))= 1 : x j ∼ x x j ∼ x m : ⇔ ∃ m ∈ Z ∀ j ∈ Z x semi-rational in G or ( j , o ( x ))= 1 : x j ∼ x or x j ∼ x − 1 x inverse semi-rational in G : ⇔ ∀ j ∈ Z ( j , o ( x ))= 1 : ⇔ ∀ x ∈ G : x is rational in G G is called rational etc. 5

  10. For χ ∈ Irr ( G ) , x ∈ G set Q ( χ ) := Q ( { χ ( y ): y ∈ G } ) Q ( x ) := Q ( { ψ ( x ): ψ ∈ Irr ( G ) } ) . 6

  11. For χ ∈ Irr ( G ) , x ∈ G set Q ( χ ) := Q ( { χ ( y ): y ∈ G } ) Q ( x ) := Q ( { ψ ( x ): ψ ∈ Irr ( G ) } ) . CT ( G ) ∈ Q h × h ⇔ G rational 6

  12. For χ ∈ Irr ( G ) , x ∈ G set Q ( χ ) := Q ( { χ ( y ): y ∈ G } ) Q ( x ) := Q ( { ψ ( x ): ψ ∈ Irr ( G ) } ) . CT ( G ) ∈ Q h × h ⇔ G rational ⇔ ∀ x ∈ G : [ Q ( x ) : Q ] ≤ 2 G semi-rational 6

  13. For χ ∈ Irr ( G ) , x ∈ G set Q ( χ ) := Q ( { χ ( y ): y ∈ G } ) Q ( x ) := Q ( { ψ ( x ): ψ ∈ Irr ( G ) } ) . CT ( G ) ∈ Q h × h ⇔ G rational ⇔ ∀ x ∈ G : [ Q ( x ) : Q ] ≤ 2 G semi-rational √ ⇔ ∀ x ∈ G : Q ( x ) ⊆ Q ( − d x ) , d x ∈ Z ≥ 0 G inverse semi-rational � ⇔ ∀ χ ∈ Irr ( G ) : Q ( χ ) ⊆ Q ( − d χ ) , d χ ∈ Z ≥ 0 6

  14. For χ ∈ Irr ( G ) , x ∈ G set Q ( χ ) := Q ( { χ ( y ): y ∈ G } ) Q ( x ) := Q ( { ψ ( x ): ψ ∈ Irr ( G ) } ) . CT ( G ) ∈ Q h × h ⇔ G rational ⇔ ∀ x ∈ G : [ Q ( x ) : Q ] ≤ 2 G semi-rational √ ⇔ ∀ x ∈ G : Q ( x ) ⊆ Q ( − d x ) , d x ∈ Z ≥ 0 G inverse semi-rational � ⇔ ∀ χ ∈ Irr ( G ) : Q ( χ ) ⊆ Q ( − d χ ) , d χ ∈ Z ≥ 0   ... CT ( G ) =     6

  15. For χ ∈ Irr ( G ) , x ∈ G set Q ( χ ) := Q ( { χ ( y ): y ∈ G } ) Q ( x ) := Q ( { ψ ( x ): ψ ∈ Irr ( G ) } ) . CT ( G ) ∈ Q h × h ⇔ G rational ⇔ ∀ x ∈ G : [ Q ( x ) : Q ] ≤ 2 G semi-rational √ ⇔ ∀ x ∈ G : Q ( x ) ⊆ Q ( − d x ) , d x ∈ Z ≥ 0 G inverse semi-rational � ⇔ ∀ χ ∈ Irr ( G ) : Q ( χ ) ⊆ Q ( − d χ ) , d χ ∈ Z ≥ 0       ... ...   CT ( G ) = CT ( G ) = CT ( G ) =       ...       6

  16. EXAMPLES . 7

  17. EXAMPLES . ◮ S n is rational. 7

  18. EXAMPLES . ◮ S n is rational. ◮ P ∈ Syl p ( S n ) . 7

  19. EXAMPLES . ◮ S n is rational. ◮ P ∈ Syl p ( S n ) . P rational ⇔ p = 2. 7

  20. EXAMPLES . ◮ S n is rational. ◮ P ∈ Syl p ( S n ) . P rational ⇔ p = 2. P inverse semi-rational ⇔ p ∈ { 2 , 3 } . 7

  21. EXAMPLES . ◮ S n is rational. ◮ P ∈ Syl p ( S n ) . P rational ⇔ p = 2. P inverse semi-rational ⇔ p ∈ { 2 , 3 } . ◮ P ∈ Syl p ( GL ( n , p f )) . 7

  22. EXAMPLES . ◮ S n is rational. ◮ P ∈ Syl p ( S n ) . P rational ⇔ p = 2. P inverse semi-rational ⇔ p ∈ { 2 , 3 } . ◮ P ∈ Syl p ( GL ( n , p f )) . P rational ⇔ p = 2 7

  23. EXAMPLES . ◮ S n is rational. ◮ P ∈ Syl p ( S n ) . P rational ⇔ p = 2. P inverse semi-rational ⇔ p ∈ { 2 , 3 } . ◮ P ∈ Syl p ( GL ( n , p f )) . P rational ⇔ p = 2 and n ≤ 12. 7

  24. EXAMPLES . ◮ S n is rational. ◮ P ∈ Syl p ( S n ) . P rational ⇔ p = 2. P inverse semi-rational ⇔ p ∈ { 2 , 3 } . ◮ P ∈ Syl p ( GL ( n , p f )) . P rational ⇔ p = 2 and n ≤ 12. P inverse semi-rational ⇒ p = 2 and n ≤ 24 p = 3 and n ≤ 18. or 7

  25. EXAMPLES . ◮ S n is rational. ◮ P ∈ Syl p ( S n ) . P rational ⇔ p = 2. P inverse semi-rational ⇔ p ∈ { 2 , 3 } . ◮ P ∈ Syl p ( GL ( n , p f )) . P rational ⇔ p = 2 and n ≤ 12. P inverse semi-rational ⇒ p = 2 and n ≤ 24 p = 3 and n ≤ 18. or DEFINITION . 7

  26. EXAMPLES . ◮ S n is rational. ◮ P ∈ Syl p ( S n ) . P rational ⇔ p = 2. P inverse semi-rational ⇔ p ∈ { 2 , 3 } . ◮ P ∈ Syl p ( GL ( n , p f )) . P rational ⇔ p = 2 and n ≤ 12. P inverse semi-rational ⇒ p = 2 and n ≤ 24 p = 3 and n ≤ 18. or DEFINITION . π ( G ) = { p prime : p | | G |} , the prime spectrum of G . 7

  27. EXAMPLES . ◮ S n is rational. ◮ P ∈ Syl p ( S n ) . P rational ⇔ p = 2. P inverse semi-rational ⇔ p ∈ { 2 , 3 } . ◮ P ∈ Syl p ( GL ( n , p f )) . P rational ⇔ p = 2 and n ≤ 12. P inverse semi-rational ⇒ p = 2 and n ≤ 24 p = 3 and n ≤ 18. or DEFINITION . π ( G ) = { p prime : p | | G |} , the prime spectrum of G . Then | π ( S n ) | − → ∞ for n → ∞ . 7

  28. G rational G inverse semi-rational G semi-rational 8

  29. G rational G inverse semi-rational G semi-rational G solvable 8

  30. G rational G inverse semi-rational G semi-rational = ⇒ π ( G ) ⊆ { 2 , 3 , 5 } G solvable Gow, 1976 8

  31. G rational G inverse semi-rational G semi-rational = ⇒ = ⇒ = ⇒ π ( G ) ⊆ { 2 , 3 , 5 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 , 17 } G solvable Gow, 1976 Chillag-Dolfi, 2010 8

  32. G rational G inverse semi-rational G semi-rational = ⇒ = ⇒ = ⇒ ? ? π ( G ) ⊆ { 2 , 3 , 5 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 , 17 } G solvable Gow, 1976 Chillag-Dolfi, 2010 8

  33. G rational G inverse semi-rational G semi-rational = ⇒ = ⇒ = ⇒ ? ? π ( G ) ⊆ { 2 , 3 , 5 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 , 17 } G solvable Gow, 1976 Chillag-Dolfi, 2010 | G | odd 8

  34. G rational G inverse semi-rational G semi-rational = ⇒ = ⇒ = ⇒ ? ? π ( G ) ⊆ { 2 , 3 , 5 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 , 17 } G solvable Gow, 1976 Chillag-Dolfi, 2010 | G | odd G = 1 8

  35. G rational G inverse semi-rational G semi-rational = ⇒ = ⇒ = ⇒ ? ? π ( G ) ⊆ { 2 , 3 , 5 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 , 17 } G solvable Gow, 1976 Chillag-Dolfi, 2010 | G | odd G = 1 G semi-rational ⇐ ⇒ G inverse semi-rational Classified by Chillag-Dolfi, 2010 8

  36. G rational G inverse semi-rational G semi-rational = ⇒ = ⇒ = ⇒ ? ? π ( G ) ⊆ { 2 , 3 , 5 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 , 17 } G solvable Gow, 1976 Chillag-Dolfi, 2010 | G | odd G = 1 G semi-rational ⇐ ⇒ G inverse semi-rational Classified by Chillag-Dolfi, 2010 G simple 8

  37. G rational G inverse semi-rational G semi-rational = ⇒ = ⇒ = ⇒ ? ? π ( G ) ⊆ { 2 , 3 , 5 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 , 17 } G solvable Gow, 1976 Chillag-Dolfi, 2010 | G | odd G = 1 G semi-rational ⇐ ⇒ G inverse semi-rational Classified by Chillag-Dolfi, 2010 G simple 3 groups Feit-Seitz, 1989 8

  38. G rational G inverse semi-rational G semi-rational = ⇒ = ⇒ = ⇒ ? ? π ( G ) ⊆ { 2 , 3 , 5 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 , 17 } G solvable Gow, 1976 Chillag-Dolfi, 2010 | G | odd G = 1 G semi-rational ⇐ ⇒ G inverse semi-rational Classified by Chillag-Dolfi, 2010 G simple 3 groups all A n + 41 groups Feit-Seitz, 1989 Alavi-Daneshkhah, 2016 8

  39. G rational G inverse semi-rational G semi-rational = ⇒ = ⇒ = ⇒ ? ? π ( G ) ⊆ { 2 , 3 , 5 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 , 17 } G solvable Gow, 1976 Chillag-Dolfi, 2010 | G | odd G = 1 G semi-rational ⇐ ⇒ G inverse semi-rational Classified by Chillag-Dolfi, 2010 G simple 3 groups 25 groups all A n + 41 groups Feit-Seitz, 1989 Alavi-Daneshkhah, 2016 8

  40. G rational G inverse semi-rational G semi-rational = ⇒ = ⇒ = ⇒ ? ? π ( G ) ⊆ { 2 , 3 , 5 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 } π ( G ) ⊆ { 2 , 3 , 5 , 7 , 13 , 17 } G solvable Gow, 1976 Chillag-Dolfi, 2010 | G | odd G = 1 G semi-rational ⇐ ⇒ G inverse semi-rational Classified by Chillag-Dolfi, 2010 G simple 3 groups 25 groups all A n + 41 groups Feit-Seitz, 1989 Alavi-Daneshkhah, 2016 | G | ≤ 511 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend