zeta functions for two dimensional shifts of finite type
play

Zeta functions for two-dimensional shifts of finite type Wen-Guei - PowerPoint PPT Presentation

Zeta functions for two-dimensional shifts of finite type Wen-Guei Hu Shing-Tung Yau Center National Chiao Tung University, Hsinchu April 26, 2015 Workshop on Combinatorics and Applications at SJTU (Joint work with Prof. Jung-Chao Ban, Prof.


  1. Zeta functions for two-dimensional shifts of finite type Wen-Guei Hu Shing-Tung Yau Center National Chiao Tung University, Hsinchu April 26, 2015 Workshop on Combinatorics and Applications at SJTU (Joint work with Prof. Jung-Chao Ban, Prof. Song-Sun Lin and Dr. Yin-Heng Lin.)

  2. Introduction Main results Ising model Further remarks Jung-Chao Ban, Wen-Guei Hu, Song-Sun Lin and Yin-Heng Lin, Zeta functions for two-dimensional shifts of finite type , Memoirs of the American Mathematical Society, Vol. 221, No. 1037 (2013). Wen-Guei Hu and Song-Sun Lin, Zeta functions for higher-dimensional shifts of finite type , International J. of Bifurcation and Chaos, Vol. 19, No. 11 (2009) 3671-3689. Wen-Guei Hu Two-dimensional zeta functions

  3. Introduction Main results Ising model Further remarks Outline Introduction 1 Riemann zeta function 1-d dynamical zeta function Thermodynamic zeta function Dynamical zeta function for Z d -actions Main results 2 Rationality of ζ n Zeta functions presented in skew coordinates Meromorphicity of ζ B ; γ Ising model 3 Further remarks 4 Wen-Guei Hu Two-dimensional zeta functions

  4. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks Outline Introduction 1 Riemann zeta function 1-d dynamical zeta function Thermodynamic zeta function Dynamical zeta function for Z d -actions Main results 2 Rationality of ζ n Zeta functions presented in skew coordinates Meromorphicity of ζ B ; γ Ising model 3 Further remarks 4 Wen-Guei Hu Two-dimensional zeta functions

  5. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks Riemann zeta function (1) Riemann zeta function: ∞ � n − s . ζ ( s ) := (1) n =1 Euler product formula: � � 1 − p − s � − 1 . ζ ( s ) = (2) p : prime Meromorphy: Riemann showed that ζ ( s ) can be extended meromorphically to C with a single pole at s = 1 . Wen-Guei Hu Two-dimensional zeta functions

  6. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks Riemann zeta function Functional equation: relation between ζ ( s ) and ζ (1 − s ) . Location of zeros: Riemann hypothesis: all nontrivial zeros are on the line Re ( s ) = 1 2 . Asymptotic formula: x the number of primes up to x is ∼ log x . Wen-Guei Hu Two-dimensional zeta functions

  7. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks Outline Introduction 1 Riemann zeta function 1-d dynamical zeta function Thermodynamic zeta function Dynamical zeta function for Z d -actions Main results 2 Rationality of ζ n Zeta functions presented in skew coordinates Meromorphicity of ζ B ; γ Ising model 3 Further remarks 4 Wen-Guei Hu Two-dimensional zeta functions

  8. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks (2) Artin-Mazur zeta function (1965) (Dynamical zeta function) [ M. Artin and B. Mazur, On periodic points, Annals Math. 81 (1965), 82-99.] φ : X → X homeomorphism on compact spaces. Γ n ( φ ) : the number of fixed point of φ n . � ∞ � � Γ n ( φ ) s n ζ φ ( s ) := exp . (3) n n =1 zeta function is defined only if Γ n ( φ ) < ∞ for all n ≥ 1 . Wen-Guei Hu Two-dimensional zeta functions

  9. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks Product formula: � 1 − s | γ | � − 1 � ζ φ ( s ) = , (4) γ where the product is taken over all periodic orbits γ of φ and | γ | denotes the number of points in γ . Bowen and Lanford (1970) [ R. Bowen and O. Lanford, Zeta functions of restrictions of the shift transformation, Proc. AMS Symp. Pure Math. 14 (1970), 43-49.] Theorem: If φ is a shift of finite type, then ζ φ is a rational function . Wen-Guei Hu Two-dimensional zeta functions

  10. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks 1-dim shifts of finite type Color set S p = { 0 , 1 , · · · , p − 1 } , p ≥ 2 Basic set of admissible local patterns B ⊂ S Z 2 × 1 p Σ( B ) : the set of all global patterns on Z 1 that can be generated by B P n ( B ) , n ≥ 1 : the set of all n -periodic patterns that can be generated by B , i.e., ( x i ) ∞ i = −∞ ∈ Σ( B ) with x j = x j + n for all j ∈ Z . x 1 x n x 2 x 1 x 2 x n P n ( B ) = ♯ P n ( B ) Wen-Guei Hu Two-dimensional zeta functions

  11. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks Example: (Golden-Mean shift) Basic set of admissible local patterns: � � B G = , , 0 0 0 1 1 0 � 1 � 1 Transition matrix A G = 1 0 P 1 ( B G ) = { 0 ∞ } → P 1 ( B G ) = 1 = tr ( A G ) P 2 ( B G ) = { (00) ∞ , (01) ∞ , (10) ∞ } → P 2 ( B G ) = 3 = tr ( A 2 G ) . . . P n ( B G ) = tr ( A n ⇒ G ) Wen-Guei Hu Two-dimensional zeta functions

  12. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks √ √ Eigenvalues of A G : g = 1+ 5 g = 1 − 5 , ¯ 2 2 � ∞ s k − log(1 − s ) = k k =1 Then, � ∞ � � P n ( A G ) s k ζ A G ( s ) ≡ exp k k =1 � ∞ � � tr ( A k G ) s k = exp k k =1 � ∞ � � g k +¯ g k s k = exp k k =1 1 = (1 − gs )(1 − ¯ gs ) Wen-Guei Hu Two-dimensional zeta functions

  13. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks � 1 − s | γ | � − 1 � ζ A G ( s ) = , (5) γ where the product is taken over all periodic orbits γ of φ and | γ | denotes the number of points in γ . Example: → γ = { 0 ∞ } , | γ | = 1 → γ = { (01) ∞ , (10) ∞ } = { (01) ∞ , σ ((01) ∞ ) } , | γ | = 2 → γ = { (001) ∞ , (010) ∞ , (100) ∞ } = { (001) ∞ , σ ((001) ∞ ) , σ 2 ((001) ∞ ) } | γ | = 3 Then, � 1 − s | γ | � − 1 � 1 1 1 ζ A G ( s ) = = 1 − s · 1 − s 2 · 1 − s 3 · · · · (6) γ Wen-Guei Hu Two-dimensional zeta functions

  14. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks A : m × m transition matrix. � ∞ � � tr ( A k ) s k ζ A ( s ) := exp k k =1 = (det( I − sA )) − 1 � (1 − λs ) − χ ( λ ) , = (7) λ ∈ Σ( A ) χ ( λ ) : algebraic multiplicity. � ∞ k s k = log( I − sA ) − 1 A k (8) k =1 exp ( tr ( M )) = det (exp( M )) (9) Wen-Guei Hu Two-dimensional zeta functions

  15. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks Outline Introduction 1 Riemann zeta function 1-d dynamical zeta function Thermodynamic zeta function Dynamical zeta function for Z d -actions Main results 2 Rationality of ζ n Zeta functions presented in skew coordinates Meromorphicity of ζ B ; γ Ising model 3 Further remarks 4 Wen-Guei Hu Two-dimensional zeta functions

  16. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks (3) Ruelle: Thermodynamic zeta function (1978) [ D. Ruelle, Thermodynamic Formalism, Addison-Wesley, 1978.] � ∞ � � Z n ( θ, α ) s n ζ R ( s ) := exp , (10) n n =1 where � � n − 1 �� � � θ ( α k x ) Z n ( θ, α ) = exp (11) x ∈ Fix α n k =0 is a partition function with periodic boundary conditions. Wen-Guei Hu Two-dimensional zeta functions

  17. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks Outline Introduction 1 Riemann zeta function 1-d dynamical zeta function Thermodynamic zeta function Dynamical zeta function for Z d -actions Main results 2 Rationality of ζ n Zeta functions presented in skew coordinates Meromorphicity of ζ B ; γ Ising model 3 Further remarks 4 Wen-Guei Hu Two-dimensional zeta functions

  18. Introduction Riemann zeta function Main results 1-d dynamical zeta function Ising model Thermodynamic zeta function Dynamical zeta function for Z d -actions Further remarks (4) J.C. Ban, S.S. Lin and Y.H. Lin (2005): Zeta functions for 2-d shifts of finite type. Basic lattice: Z 2 × 2 Set of symbols / colors: S p = { 0 , 1 , · · · , p − 1 } . In particular, S 2 = { 0 , 1 } = { , } Σ 2 × 2 ( p ) := S Z 2 × 2 : the set of all local patterns. p Basic admissible set B : B ⊂ Σ 2 × 2 ( p ) . Wen-Guei Hu Two-dimensional zeta functions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend