random variable models of computation
play

Random Variable Models of Computation Michael W. Mislove Tulane - PowerPoint PPT Presentation

Random Variable Models of Computation Michael W. Mislove Tulane University New Orleans, LA Samson@60 Fest Oxford, May 28 30, 2013 Joint work with Tyler Barker Work sponsored by AFOSR & NSF The Real Samson - MFPS XXIV 2007 08 UEFA


  1. Random Variable Models of Computation Michael W. Mislove Tulane University New Orleans, LA Samson@60 Fest Oxford, May 28 –30, 2013 Joint work with Tyler Barker Work sponsored by AFOSR & NSF

  2. The Real Samson - MFPS XXIV 2007 – 08 UEFA Champions League Manchester United Chelsea 1 1 Manchester United won 6–5 on penalties Date 21 May 2008 Venue Luzhniki Stadium, Moscow UEFA Man of the Match: Edwin van der Sar (Manchester United) Fans’ Man of the Match: Cristiano Ronaldo (Manchester United)

  3. The Real Samson - MFPS XXIV

  4. Continuous Random Variables ◮ f : ( X , µ ) → ( Y , Ω) random variable ◮ ( X , µ ) probability space, ◮ ( Y , Ω) measure space ◮ f is measurable: f − 1 ( A ) measurable ( ∀ A ∈ Ω) ◮ Continuous if X and Y topological spaces, f continuous and X , Y endowed with Borel σ -algebras.

  5. Continuous Random Variables ◮ f : ( X , µ ) → ( Y , Ω) random variable ◮ Assume X , Y domains endowed with Scott topology. CRV ( X , Y ) = { ( µ, f ) | µ ∈ Prob ( X ) , f : supp µ → Y } supp µ = � { X | µ ( X ) = 1 & X closed } .

  6. Continuous Random Variables ◮ f : ( X , µ ) → ( Y , Ω) random variable ◮ Assume X , Y domains endowed with Scott topology. CRV ( X , Y ) = { ( µ, f ) | µ ∈ Prob ( X ) , f : supp µ → Y } ◮ Goubault-Larrecq & Varacca, LICS 2011: BCD closed under Θ RV ( C , P ) = { ( µ, f ) ∈ CRV ( C , P ) | µ thin } ( µ, f ) ≤ ( ν, g ) iff π supp µ ( ν ) = µ & f ◦ π supp µ ≤ g C - Cantor tree

  7. Continuous Random Variables ◮ f : ( X , µ ) → ( Y , Ω) random variable ◮ Assume X , Y domains endowed with Scott topology. CRV ( X , Y ) = { ( µ, f ) | µ ∈ Prob ( X ) , f : supp µ → Y } ◮ Goubault-Larrecq & Varacca, LICS 2011: BCD closed under Θ RV ( C , P ) = { ( µ, f ) ∈ CRV ( C , P ) | µ thin } ( µ, f ) ≤ ( ν, g ) iff π supp µ ( ν ) = µ & f ◦ π supp µ ≤ g C - Cantor tree ◮ Goal: Understand Θ RV ( C , P ) construction for P ∈ BCD

  8. Motivating the Order - Automata ◮ A (generative) probabilistic automaton A has a finite set S of states, a start state s 0 ∈ S , a finite set of actions, Act , and a transition relation − → ⊆ S × Prob( Act × S ). ◮ Here’s a simple example with one action, flip : Unfolding the automaton: 1 0 2 ǫ 1 2 1 1 2 2 0 1 start ǫ 1 1 1 1 1 1 2 2 2 2 2 2 1 2 0 1 0 1 . . . . . . . . . . . . 1 1 2

  9. Motivating the Order - Trace Distributions ◮ Typically, such automata are modeled by their trace distributions: µ 0 = δ ǫ µ 1 = 1 2 δ 0 + 1 2 δ 1 µ 2 = 1 4 δ 00 + 1 4 δ 01 + 1 4 δ 10 + 1 4 δ 11 . . . ◮ Stripping away the probabilities, we have the following sets on which these measures are concentrated: X 0 = { ǫ } X 1 = { 0 , 1 } X 2 = { 00 , 01 , 10 , 11 } . . .

  10. Motivating the Order - Trace Distributions ◮ Stripping away the probabilities, we have the following sets on which these measures are concentrated: X 0 = { ǫ } X 1 = { 0 , 1 } X 2 = { 00 , 01 , 10 , 11 } . . . ◮ Notice that the X n s are antichains , and X 0 ⊑ C X 1 ⊑ C X 2 ⊑ C · · · , where X ⊑ C Y ⇔ X ⊆ ↓ Y & Y ⊆ ↑ X ⇔ π X ( Y ) = X

  11. The Underlying Structure - Domains and Trees ◮ A ∞ = A ∗ ∪ A ω is a domain under the prefix order. KA ∞ = A ∗ – the finite words If A is finite, then A ∞ is coherent Compact in the Lawson topology k ∈ A ∗ , F ⊆ A ∗ finite Open sets: U = ↑ k \ ↑ F ,

  12. The Underlying Structure - Domains and Trees ◮ A ∞ = A ∗ ∪ A ω is a domain under the prefix order. ◮ AC ( A ∞ ) = ( { X | Lawson-compact antichain } , ⊑ C ) X ⊑ C Y ⇔ X ⊆ ↓ Y & Y ⊆ ↑ X ⇔ π X ( Y ) = X Subdomain of P C ( A ∞ ).

  13. The Underlying Structure - Domains and Trees ◮ A ∞ = A ∗ ∪ A ω is a domain under the prefix order. ◮ AC ( A ∞ ) = ( { X | Lawson-compact antichain } , ⊑ C ) ◮ Theorem: AC ( A ∞ ) is a bounded complete domain: all nonempty subsets have infima. ( ∅ � = F ⊆ AC ( A ∞ ) ⇒ inf F = Max( � X ∈F ↓ X )

  14. The Underlying Structure - Domains and Trees ◮ A ∞ = A ∗ ∪ A ω is a domain under the prefix order. ◮ AC ( A ∞ ) = ( { X | Lawson-compact antichain } , ⊑ C ) ◮ Theorem: AC ( A ∞ ) is a bounded complete domain: all nonempty subsets have infima. Moreover, given { X n } n ∈ N ⊆ AC ( A ∞ ) directed and X ∈ AC ( A ∞ ), TAE: ( i ) X = sup n X n ( ii ) X = lim n X n in the Vietoris topology on Γ( A ∞ ). ◮ In particular, any X ∈ AC ( A ∞ ) satisfies X = sup n π n ( X ) = lim n π n ( X ), where π n : A ∞ → A ≤ n is the canonical retraction.

  15. Thin Probability Measures ◮ µ ∈ Prob ( A ∞ ) is thin if supp Λ µ ∈ AC ( A ∞ ). Note: supp Λ µ is in the Lawson topology. ◮ Define µ ≤ ν iff π supp Λ µ ( ν ) = µ Agrees with usual domain order ( qua valuations) / functional analysis order via cones. Θ Prob ( A ∞ ) = ( { µ ∈ Prob ( A ∞ ) | µ thin } , ≤ ).

  16. Thin Probability Measures ◮ µ ∈ Prob ( A ∞ ) is thin if supp Λ µ ∈ AC ( A ∞ ). ◮ Proposition: (Θ Prob ( A ∞ ) , ≤ ) is a bounded complete domain: all nonempty subsets have infima. ( ∅ � = M ⊆ Θ Prob ( A ∞ ) ⇒ ∀ ν ∈ M , inf M = π M ( ν ) , M = inf µ ∈M supp Λ µ )

  17. Thin Probability Measures ◮ µ ∈ Prob ( A ∞ ) is thin if supp Λ µ ∈ AC ( A ∞ ). ◮ Proposition: (Θ Prob ( A ∞ ) , ≤ ) is a bounded complete domain: all nonempty subsets have infima. Moreover, given { µ n } n ∈ N ⊆ Θ Prob ( A ∞ ) directed and µ ∈ Θ Prob ( A ∞ ), TAE: ( i ) µ = sup n µ n ( ii ) µ = lim n µ n in the weak ∗ -topology on Θ Prob ( A ∞ ). ◮ In particular, any µ ∈ Θ Prob ( A ∞ ) satisfies µ = sup n π n ( µ ) = lim n π n ( µ ), where π n : A ∞ → A ≤ n is the canonical retraction.

  18. Adding Function Spaces ◮ X ⊑ C Y ∈ AC ( A ∞ ) , P ∈ BCD = ⇒ f �→ f ◦ π X : [ X − → P ] ֒ → [ Y − → P ] & g ( x ) = inf g ( π − 1 g �→ � g : [ Y − → P ] − → → [ X − → P ] by � X ( x )).

  19. Adding Function Spaces ◮ X ⊑ C Y ∈ AC ( A ∞ ) , P ∈ BCD = ⇒ f �→ f ◦ π X : [ X − → P ] ֒ → [ Y − → P ] & g ( x ) = inf g ( π − 1 g �→ � g : [ Y − → P ] − → → [ X − → P ] by � X ( x )). ◮ X ∈ AC ( A ∞ ) , P ∈ BCD = ⇒ [ X − → P ] ∈ BCD: → P ] ≃ lim n P π n ( X ) . [ X − → P ] ≃ lim n [ π n ( X ) −

  20. Adding Function Spaces ◮ X ∈ AC ( A ∞ ) , P ∈ BCD = ⇒ [ X − → P ] ∈ BCD: → P ] ≃ lim n P π n ( X ) . [ X − → P ] ≃ lim n [ π n ( X ) − ◮ ( � X ∈ AC ( A ∞ ) [ X − → P ] , ≤ R ) ∈ BCD: f ≤ R g iff dom f ⊑ C dom g & f ◦ π dom f ≤ g .

  21. Adding Function Spaces ◮ X ∈ AC ( A ∞ ) , P ∈ BCD = ⇒ [ X − → P ] ∈ BCD: → P ] ≃ lim n P π n ( X ) . [ X − → P ] ≃ lim n [ π n ( X ) − ◮ ( � X ∈ AC ( A ∞ ) [ X − → P ] , ≤ R ) ∈ BCD: f ≤ R g iff dom f ⊑ C dom g & f ◦ π dom f ≤ g . Defining the Model ◮ Θ Prob ( A ∞ ) × � X ∈ AC ( A ∞ ) [ X − → P ] ∈ BCD if P ∈ BCD.

  22. Adding Function Spaces ◮ X ∈ AC ( A ∞ ) , P ∈ BCD = ⇒ [ X − → P ] ∈ BCD: → P ] ≃ lim n P π n ( X ) . [ X − → P ] ≃ lim n [ π n ( X ) − ◮ ( � X ∈ AC ( A ∞ ) [ X − → P ] , ≤ R ) ∈ BCD: f ≤ R g iff dom f ⊑ C dom g & f ◦ π dom f ≤ g . Defining the Model ◮ Θ Prob ( A ∞ ) × � X ∈ AC ( A ∞ ) [ X − → P ] ∈ BCD if P ∈ BCD. ◮ For P ∈ BCD Θ RV ( A ∞ , P ) = { ( µ, f ) | µ ∈ Θ Prob ( A ∞ ) , f : supp Λ µ − → P } is a retract of Θ Prob ( A ∞ ) × � X ∈ AC ( A ∞ ) [ X − → P ] : ( µ, f ) �→ ( π Y ( µ ) , f ◦ π Y ) is the projection Y = supp Λ µ ∧ dom f .

  23. The Monad Given P ∈ BCD, define ◮ η P : P → Θ RV ( A ∞ , P ) by η P ( x ) = ( δ ǫ , const x ). → Θ RV ( A ∞ , Q ) and ◮ Given h : P − ( � x ∈ F r x δ x , f ) ∈ Θ RV ( A ∞ , P ) define h † : Θ RV ( A ∞ , P ) − → Θ RV ( A ∞ , Q ) by h † ( � x ∈ F r x δ x , f ) = ( � x ∈ F r x δ x ∗ ( π 1 ◦ h ◦ f )( x ) , g ), where g : ( � x ∈ F x · supp Λ ( π 1 ◦ h ◦ f )( x )) → Q by g ( y ) = ( π 2 ◦ h ◦ f )( y )( y ).

  24. The Monad Given P ∈ BCD, define ◮ η P : P → Θ RV ( A ∞ , P ) by η P ( x ) = ( δ ǫ , const x ). → Θ RV ( A ∞ , Q ) and ◮ Given h : P − ( � x ∈ F r x δ x , f ) ∈ Θ RV ( A ∞ , P ) define h † : Θ RV ( A ∞ , P ) − → Θ RV ( A ∞ , Q ) by h † ( � x ∈ F r x δ x , f ) = ( � x ∈ F r x δ x ∗ ( π 1 ◦ h ◦ f )( x ) , g ), where g : ( � x ∈ F x · supp Λ ( π 1 ◦ h ◦ f )( x )) → Q by g ( y ) = ( π 2 ◦ h ◦ f )( y )( y ). ◮ These constructs satisfy the monad laws

  25. The Monad Given P ∈ BCD, define ◮ η P : P → Θ RV ( A ∞ , P ) by η P ( x ) = ( δ ǫ , const x ). → Θ RV ( A ∞ , Q ) and ◮ Given h : P − ( � x ∈ F r x δ x , f ) ∈ Θ RV ( A ∞ , P ) define h † : Θ RV ( A ∞ , P ) − → Θ RV ( A ∞ , Q ) by h † ( � x ∈ F r x δ x , f ) = ( � x ∈ F r x δ x ∗ ( π 1 ◦ h ◦ f )( x ) , g ), where g : ( � x ∈ F x · supp Λ ( π 1 ◦ h ◦ f )( x )) → Q by g ( y ) = ( π 2 ◦ h ◦ f )( y )( y ). ◮ These constructs satisfy the monad laws ◮ BUT h † is not monotone: h ( x ) = ( δ b , const y ) ( δ ǫ , f ) ≤ ( δ a , f ), but ( δ b , g 1 ) �≤ ( δ ab , g 2 ), if a � = b ∈ A .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend