random models of dynamical systems introduction to sde s
play

Random Models of Dynamical Systems Introduction to SDEs (3/5) - PowerPoint PPT Presentation

Stochastic differential equations Diffusion processes Random Models of Dynamical Systems Introduction to SDEs (3/5) 4GMAROM Fran cois Le Gland INRIA Rennes + IRMAR http://www.irisa.fr/aspi/legland/insa-rennes/ November 26, 2018 1 /


  1. Stochastic differential equations Diffusion processes Random Models of Dynamical Systems Introduction to SDE’s (3/5) 4GM–AROM Fran¸ cois Le Gland INRIA Rennes + IRMAR http://www.irisa.fr/aspi/legland/insa-rennes/ November 26, 2018 1 / 43

  2. Stochastic differential equations Diffusion processes Stochastic differential equations Diffusion processes 2 / 43

  3. Stochastic differential equations Diffusion processes Definition, assumptions on the coefficients consider the equation ż t ż t X p t q “ X p 0 q ` b p s , X p s qq ds ` σ p s , X p s qq dB p s q 0 0 with a m –dimensional Brownian motion B “ p B p t q , t ě 0 q , and time–dependent coefficients: ‚ a d –dimensional drift vector b p t , x q defined on r 0 , 8q ˆ R d ‚ a d ˆ m diffusion matrix σ p t , x q defined on r 0 , 8q ˆ R d global Lipschitz condition: there exists a positive constant L ą 0 such that for any t ě 0 and any x , x 1 P R d | b p t , x q´ b p t , x 1 q| ď L | x ´ x 1 | } σ p t , x q´ σ p t , x 1 q} ď L | x ´ x 1 | and linear growth condition: there exists a positive constant K ą 0 such that for any t ě 0 and any x P R d | b p t , x q| ď K p 1 ` | x |q and } σ p t , x q} ď K p 1 ` | x |q 3 / 43

  4. Stochastic differential equations Diffusion processes a solution to the SDE is any process X in M 2 pr 0 , T sq such that the identity holds almost surely the condition that X is in M 2 pr 0 , T sq makes sure that the stochastic integral ż t σ p s , X p s qq dB p s q 0 defines a (true, square–integrable) martingale: indeed, the vector–valued stochastic integral makes sense iff for any v P R d , the one–dimensional stochastic integral ż t ż t v ˚ σ p s , X p s qq dB p s q v ˚ σ p s , X p s qq dB p s q “ 0 0 makes sense, i.e. iff ż T } σ p s , X p s qq σ ˚ p s , X p s qq} ds ă 8 E 0 and note that ż T ż T } σ p s , X p s qq σ ˚ p s , X p s qq} ds ď 2 K 2 E p 1 ` | X p s q| 2 q ds E 0 0 4 / 43

  5. Stochastic differential equations Diffusion processes Lemma [Gronwall lemma] if the nonnegative function u p t q satisfies the functional relation: for any t ě 0 and for some nonnegative constants a , c ě 0 ż t u p t q ď a ` c u p s q ds 0 then for any t ě 0 u p t q ď a exp t c t u Proof assume c ą 0 without loss of generality, and note that ż t ż t d dt r exp t´ c t u u p s q ds s “ exp t´ c t u r u p t q´ c u p s q ds s ď a exp t´ c t u 0 0 integration yields ż t ż t exp t´ c s u ds “ a exp t´ c t u u p s q ds ď a c p 1 ´ exp t´ c t uq 0 0 hence ż t u p s q ds ď a c p exp t c t u ´ 1 q l 0 5 / 43

  6. Stochastic differential equations Diffusion processes simple (yet useful) formula ż t ż t ψ p s q ds | p ď t p ´ 1 | ψ p s q| p ds | 0 0 hence (taking ψ p s q “ φ 2 p s q and using p { 2 in place of p ) ż t ż t | φ p s q| 2 ds q p { 2 ď t p { 2 ´ 1 | φ p s q| p ds p 0 0 older inequality for conjugate exponents p , p 1 yields Proof using the H¨ ż t ż t ż t 1 p 1 ds q 1 { p 1 p | ψ p s q| p ds q 1 { p | ψ p s q ds | ď p 0 0 0 and note that p { p 1 “ p ´ 1 l 6 / 43

  7. Stochastic differential equations Diffusion processes Existence and uniqueness of a solution Theorem 1 under the global Lipschitz and linear growth conditions, and for any square–integrable initial condition X p 0 q , there exists a unique solution to the SDE ż t ż t X p t q “ X p 0 q ` b p s , X p s qq ds ` σ p s , X p s qq dB p s q 0 0 Proof uniqueness: let X “ p X p t q , t ě 0 q and X 1 “ p X 1 p t q , t ě 0 q be two solutions, with the same initial condition X p 0 q “ X 1 p 0 q by difference, for any 0 ď t ď T ż t | X p t q ´ X 1 p t q| ď | b p s , X p s qq ´ b p s , X 1 p s qq ds | 0 ż t p σ p s , X p s qq ´ σ p s , X 1 p s qqq dB p s q | ` | 0 7 / 43

  8. Stochastic differential equations Diffusion processes hence ż t E | X p t q ´ X 1 p t q| 2 ď 2 E | p b p s , X p s qq ´ b p s , X 1 p s qqq ds | 2 0 ż t p σ p s , X p s qq ´ σ p s , X 1 p s qqq dB p s q | 2 ` 2 E | 0 ż t | b p s , X p s qq ´ b p s , X 1 p s qq| 2 ds ď 2 t E 0 ż t } σ p s , X p s qq ´ σ p s , X 1 p s qq} 2 ds ` 2 E 0 ż t ď 2 L 2 p T ` 1 q E | X p s q ´ X 1 p s q| 2 ds 0 it follows from the Gronwall lemma that for any 0 ď t ď T E | X p t q ´ X 1 p t q| 2 “ 0 8 / 43

  9. Stochastic differential equations Diffusion processes Picard iteration: for n “ 0, let X 0 p t q ” X p 0 q for any 0 ď t ď T , and for any n ě 1 consider the Itˆ o process ż t ż t X n p t q “ X p 0 q ` b p s , X n ´ 1 p s qq ds ` σ p s , X n ´ 1 p s qq dB p s q 0 0 no localization is needed here, thanks to the following a priori estimate: there exists a positive constant M p T q such that for any n ě 1 E | X n p t q| 2 ď M p T q sup ( ‹ ) 0 ď t ď T clearly, the estimate holds for n “ 0, and by induction if the estimate holds at stage p n ´ 1 q , then ż t ż t } σ p s , X n ´ 1 p s qq σ ˚ p s , X n ´ 1 p s qq} ds ď K 2 E p 1 ` | X n ´ 1 p s q|q 2 ds E 0 0 ż t ď 2 K 2 p t ` E | X n ´ 1 p s q| 2 ds q 0 in other words: the integrand s ÞÑ σ p s , X n ´ 1 p s qq belongs to M 2 pr 0 , T sq 9 / 43

  10. Stochastic differential equations Diffusion processes a priori estimate: assume that estimate ( ‹ ) holds at stage n ´ 1, then ż t ż t | X n p t q| ď | X p 0 q| ` | b p s , X n ´ 1 p s qq ds | ` | σ p s , X n ´ 1 p s qq dB p s q| 0 0 and E | X n p t q| 2 ´ 3 E | X p 0 q| 2 ż t ż t b p s , X n ´ 1 p s qq ds | 2 ` 3 E | σ p s , X n ´ 1 p s qq dB p s q| 2 ď 3 E | 0 0 ż t ż t | b p s , X n ´ 1 p s qq| 2 ds ` 3 E } σ p s , X n ´ 1 p s qq} 2 ds ď 3 t E 0 0 ż t ż t ď 6 K 2 t E p 1 ` | X n ´ 1 p s q| 2 q ds ` 6 K 2 E p 1 ` | X n ´ 1 p s q| 2 q ds 0 0 ż t ď 6 K 2 T p T ` 1 q ` 6 K 2 p T ` 1 q E | X n ´ 1 p s q| 2 ds 0 10 / 43

  11. Stochastic differential equations Diffusion processes in other words, the sequence u n p t q “ E | X n p t q| 2 satisfies the functional relation ż t u 0 p t q ” E | X p 0 q| 2 u n p t q ď a p T q ` c p T q u n ´ 1 p s q ds with 0 by induction u n p t q ď a p T q p 1 ` c p T q t ` ¨ ¨ ¨ ` p c p T q t q n ´ 1 q ` p c p T q t q n E | X p 0 q| 2 p n ´ 1 q ! n ! hence E | X n p t q| 2 ď a p T q exp t c p T q T u ` p c p T q T q n E | X p 0 q| 2 sup n ! 0 ď t ď T which proves the a priori estimate ( ‹ ) where n ě 1 rp c p T q T q n s E | X p 0 q| 2 M p T q “ a p T q exp t c p T q T u ` max n ! depends on T , K and E | X p 0 q| 2 , and does not depend on L 11 / 43

  12. Stochastic differential equations Diffusion processes existence: back to the Picard iteration, by difference ż s X n ` 1 p s q ´ X n p s q “ p b p u , X n p u qq ´ b p u , X n ´ 1 p u qqq du 0 ż s ` p σ p u , X n p u qq ´ σ p u , X n ´ 1 p u qqq dB p u q 0 hence ż s sup | X n ` 1 p s q ´ X n p s q| ď sup | p b p u , X n p u qq ´ b p u , X n ´ 1 p u qqq du | 0 ď s ď t 0 ď s ď t 0 ż s ` sup | p σ p u , X n p u qq ´ σ p u , X n ´ 1 p u qqq dB p u q| 0 ď s ď t 0 introduce the function | X n p s q ´ X n ´ 1 p s q| 2 s ε n p t q “ E r sup 0 ď s ď t 12 / 43

  13. Stochastic differential equations Diffusion processes using the Doob inequality yields ż s p b p u , X n p u qq ´ b p u , X n ´ 1 p u qqq du | 2 s ε n ` 1 p t q ď 2 E r sup | 0 ď s ď t 0 ż s p σ p u , X n p u qq ´ σ p u , X n ´ 1 p u qqq dB p u q| 2 s ` 2 E r sup | 0 ď s ď t 0 ż s | b p u , X n p u qq ´ b p u , X n ´ 1 p u qq| 2 du s ď 2 t E r sup 0 ď s ď t 0 ż t } σ p u , X n p u qq ´ σ p u , X n ´ 1 p u qq} 2 du s ` 8 E r 0 ż t ď 2 L 2 p T ` 4 q E r | X n p s q ´ X n ´ 1 p s q| 2 ds s 0 ż t ď 2 L 2 p T ` 4 q | X n p u q ´ X n ´ 1 p u q| 2 s ds E r sup 0 ď u ď s 0 13 / 43

  14. Stochastic differential equations Diffusion processes in other words, the sequence ε n p t q satisfies the functional relation ż t ε n ` 1 p t q ď c p T q ε n p s q ds 0 by induction, for any 0 ď t ď T ε n ` 1 p t q ď ε 1 p T q p c p T q t q n n ! using the Markov inequality yields | X n ` 1 p t q ´ X n p t q| ą 2 ´p n ` 1 q s P r sup 0 ď t ď T | X n ` 1 p t q ´ X n p t q| 2 s ď 4 ε 1 p T q p 4 c p T q T q n ď 4 n ` 1 E r sup n ! 0 ď t ď T it follows from the Borel–Cantelli lemma that, almost surely | X n ` 1 p t q ´ X n p t q| ď 2 ´p n ` 1 q sup 0 ď t ď T and the triangle inequality yields p ÿ | X n ` k p t q ´ X n ` k ´ 1 p t q|s ď 2 ´ n sup | X n ` p p t q ´ X n p t q| ď r sup 0 ď t ď T 0 ď t ď T k “ 1 14 / 43

  15. Stochastic differential equations Diffusion processes almost surely, the sequence X n is a Cauchy sequence in C pr 0 , T sq , hence the continuous mapping t ÞÑ X n p t q converges uniformly on r 0 , T s to a continuous mapping t ÞÑ χ p t q clearly ż t ż t X n p t q Ñ χ p t q and b p s , X n ´ 1 p s qq ds Ñ b p s , χ p s qq ds 0 0 in L 2 as n Ò 8 , and the limit χ satisfies the estimate ( ‹ ), so that the integrand s ÞÑ σ p s , χ p s qq belongs to M 2 pr 0 , T sq , hence ż t ż t σ p s , X n ´ 1 p s qq dB p s q Ñ σ p s , χ p s qq dB p s q 0 0 in L 2 as n Ò 8 : in other words, the limiting mapping t ÞÑ χ p t q solves the SDE l 15 / 43

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend