exact separation of eigenvalues of large information plus
play

Exact separation of eigenvalues of large information plus noise - PowerPoint PPT Presentation

Exact separation of eigenvalues of large information plus noise complex Gaussian models Philippe Loubaton, Pascal Vallet Universit e de Paris-Est / Marne la Vall ee, LIGM 11/10/2010 Behaviour of the eigenvalue distribution of Exact


  1. Exact separation of eigenvalues of large information plus noise complex Gaussian models Philippe Loubaton, Pascal Vallet Universit´ e de Paris-Est / Marne la Vall´ ee, LIGM 11/10/2010

  2. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Plan Problem statement. 1 Behaviour of the eigenvalue distribution of ˆ R N . 2 Exact separation of the eigenvalues of ˆ R N . 3 Conclusion 4

  3. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Plan Problem statement. 1 Behaviour of the eigenvalue distribution of ˆ R N . 2 Exact separation of the eigenvalues of ˆ R N . 3 Conclusion 4

  4. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio The information plus noise model Introduced in Dozier-Silverstein-2007. M ( N ) × N matrix Σ N Σ N = B N + σ W N B N deterministic matrix sup N � B N � < + ∞ W N zero mean complex Gaussian i.i.d. matrix E | W N , i , j | 2 = 1 N

  5. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Problem statement Empirical covariance matrix ˆ R N = Σ N Σ ∗ N ( M , N ) → + ∞ , c N = M N → c < 1 Prove the ”Exact Separation” of the eigenvalues of ˆ R N Property introduced by Bai and Silverstein 1999 in the context of zero mean possibly non Gaussian correlated random matrices

  6. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Numerical illustration (I). σ 2 = 2 N 0 with multiplicity M Eigenvalues of B N B ∗ 2 , 5 with multiplicity M 2 c N = M N , c N = 0 . 2 Representation of histograms of the eigenvalues of ˆ R N

  7. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Numerical illustration (II). c = M N = 0 . 2

  8. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Motivation See the talk of P. Vallet tomorrow Rank ( B N ) = K ( N ) < M Π N orthogonal projection matrix on ( Range ( B N )) ⊥ Subspace estimation methods. Estimate consistently a ∗ N Π N a N from Σ N Needs to evaluate the location of the eigenvalues of ˆ R N

  9. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Plan Problem statement. 1 Behaviour of the eigenvalue distribution of ˆ R N . 2 Exact separation of the eigenvalues of ˆ R N . 3 Conclusion 4

  10. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio The ”asymptotic” limit eigenvalue distribution µ N Notation N → + ∞ stands for ( M , N ) → + ∞ , c N = M N → c < 1 (ˆ λ k , N ) k = 1 ,..., M eigenvalues of ˆ R N , ( λ k , N ) k = 1 ,..., M eigenvalues of B N B ∗ N , arranged in decreasing order Rank ( B N ) = K ( N ) < M , λ K + 1 , N = . . . = λ M , N = 0 Dozier-Silverstein 2007 : It exists a deterministic probability measure µ N carried by R + such that � M 1 k = 1 δ ( λ − ˆ λ k , N ) − µ N → 0 weakly almost surely M

  11. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio How to characterize µ N es transform m N ( z ) of µ N The Stieltj` µ N ( d λ ) m N ( z ) = defined on C − R + � λ − z R + m N ( z ) is solution of the equation m N ( z ) 1 + σ 2 c N m N ( z ) = f N ( w N ( z )) w N ( z ) = z ( 1 + σ 2 c N m N ( z )) 2 − σ 2 ( 1 − c N )( 1 + σ 2 c N m N ( z )) � M f N ( w ) = 1 N − w I M ) − 1 = 1 M Trace ( B N B ∗ 1 M k = 1 λ k , N − w

  12. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Properties of µ N , c N = M N < 1 S N support of µ N Dozier-Silverstein-2007 For each x ∈ R , lim z → x , z ∈ C + m N ( z ) = m N ( x ) exists x → m N ( x ) continuous on R , continuously differentiable on R \ ∂ S N µ N ( d λ ) absolutely continuous, density 1 π Im ( m N ( x ))

  13. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Characterization of S N . Reformulation of D-S 2007 in Vallet-Loubaton-Mestre-2009 Function φ N ( w ) defined on R by φ N ( w ) = w ( 1 − σ 2 c N f N ( w )) 2 + σ 2 ( 1 − c N )( 1 − σ 2 c N f N ( w )) φ N has 2 Q positive extrema with preimages w ( N ) 1 , − < w ( N ) 1 , + < . . . w ( N ) Q , − < w ( N ) Q , + . These extrema verify x ( N ) 1 , − < x ( N ) 1 , + < . . . x ( N ) Q , − < x ( N ) Q , + . S N = [ x ( N ) 1 , − , x ( N ) 1 , + ] ∪ . . . [ x ( N ) Q , − , x ( N ) Q , + ] Each eigenvalue λ l , N of B N B ∗ N belongs to an interval ( w ( N ) k , − , w ( N ) k , + )

  14. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio φ ( w ) Support S x + 3 x − 3 x + 2 x − 2 x + 1 x − 1 w − w 1 λ 4 λ 3 λ 2 λ 1 w + w + 2 1 w − w − w + 2 3 3

  15. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Some definitions Each interval [ x ( N ) q , − , x ( N ) q , + ] is called a cluster An eigenvalue λ l , N of B N B ∗ N is said to be associated to cluster [ x ( N ) q , − , x ( N ) q , + ] if λ l , N ∈ ( w ( N ) q , − , w ( N ) q , + ) 2 eigenvalues of B N B ∗ N are said to be separated if they are associated to different clusters

  16. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Some useful properties of w N ( x ) w N ( x ) = x ( 1 + σ 2 c N m N ( x )) 2 − σ 2 ( 1 − c N )( 1 + σ 2 c N m N ( x )) . φ N ( w N ( x )) = x for each x Int ( S N ) = { x , Im ( w N ( x )) > 0 } w N ( x ) is real and increasing on each component of S c N w N ( x − q , N ) = w − q , N , w N ( x + q , N ) = w + q , N w N ( x ) is continuous on R and continuously differentiable on R \ ∂ S N | w N ( x ) | ≃ q , N | 1 / 2 if x ≃ x − , + ′ 1 q , N | x − x − , +

  17. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Contours associated to function x → w N ( x ) (I) Illustration 2 clusters. Im{ w ( x )} w ( x − 2 ) = w − w ( x + 2 ) = w + 2 2 0 λ 4 λ 3 λ 2 λ 1 Re{ w ( x )} w ( x + 1 ) = w + w ( x − 1 ) = w − 1 1

  18. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Contours associated to function x → w N ( x ) (II) C q = { w N ( x ) , x ∈ [ x − q , N , x + q , N ] } ∪ { w N ( x ) ∗ , x ∈ [ x − q , N , x + q , N ] } Encloses the eigenvalues of B N B ∗ N associated to cluster [ x − q , N , x + q , N ] Continuously differentiable path (except at x − q , N , x + q , N where | w N ( x ) | ≃ ′ 1 q , N | 1 / 2 ) | x − x − , + g ( w ) continuous in a neighborhood of C q , g ( w ∗ ) = g ( w ) ∗ � x + � q , N � � g ( w ) dw = 2 i g ( w N ( x )) w N ( x ) dx Im ′ x − C − q q , N

  19. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Plan Problem statement. 1 Behaviour of the eigenvalue distribution of ˆ R N . 2 Exact separation of the eigenvalues of ˆ R N . 3 Conclusion 4

  20. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio The results. Theorem 1 Let [ a , b ] such that ] a − ǫ, b + ǫ [ ⊂ ( S N ) c for each N > N 0 . Then, almost surely, for N large enough, none of the eigenvalues of R N appears in [ a , b ] . ˆ Theorem 2 Let [ a , b ] such that ] a − ǫ, b + ǫ [ ⊂ ( S N ) c for each N > N 0 . Then, almost surely, for N large enough, card { k : ˆ λ k , N < a } card { k : λ k , N < w N ( a ) } = card { k : ˆ λ k , N > b } card { k : λ k , N > w N ( b ) } =

  21. Behaviour of the eigenvalue distribution of ˆ Exact separation of the eigenvalues of ˆ Problem statement. R N . R N . Conclusio Existing related results. Bai and Silverstein 1998 in the context of the model Y = HW , W possibly non Gaussian Capitaine, Donati-Martin, and Feral 2009 in the context of the deformed Wigner model Y = A + X , X Gaussian i.i.d. Wigner matrix (or entries verifying the Poincar´ e-Nash inequality), A deterministic hermitian matrix with constant rank. No previous result in the context of the Information plus Noise model

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend