r adiation damage in glasses
play

R ADIATION DAMAGE IN GLASSES Sylvain Peuget CEA DEN,DE2D,SEVT,LMPA - PowerPoint PPT Presentation

R ADIATION DAMAGE IN GLASSES Sylvain Peuget CEA DEN,DE2D,SEVT,LMPA Marcoule, France CEA | 10 AVRIL 2012 | PAGE 1 Joint ICTP-IAEA Workshop Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 1 C O - AUTHORS J.M. Delaye, M. Tribet, A.H Mir, E.A.


  1. R ADIATION DAMAGE IN GLASSES Sylvain Peuget CEA DEN,DE2D,SEVT,LMPA Marcoule, France CEA | 10 AVRIL 2012 | PAGE 1 Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 1

  2. C O - AUTHORS J.M. Delaye, M. Tribet, A.H Mir, E.A. Maugeri, C. Mendoza, T. Fares, G. Gutierrez, G. Bureau, O Bouty, C. Jégou T. Charpentier, M. Moksura I. Monnet, M. Toulemonde, S. Bouffard, Ganil, Caen, France J. DeBonfils, G. Panczer, D. DeLigny LPCML – Univ. Claude Bernard, Lyon G. Calas, L. Galoisy, IMPMC - Univ. Pierre et Marie Curie, France G. Henderson University of Toronto, Department of Geology, Toronto, Canada Funded by CEA and AREVA NC T. Wiss, A. Jenssen, J.Y Colle, J. Somers, L. Martel, D. Staicu, EC JRC-ITU, Karlsruhe, Germany With the support of J. Hinks, G. Greaves, S. Donnelly, Huddersfield University, UK S. Jublot-Leclerc, C. Baumier, E. Oliviero, CSNSM, Orsay, France T. Sauvage, R. Bes, F. Chamssedine 20 NOVEMBRE 2017 CEA | 10 AVRIL 2012 | PAGE 2 CNRS-CEMHTI – Orléans, France X. Deschanels, R. Podor; J. Cambedouzou, ICSM, Marcoule, France Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 2

  3. Glass and radiation: an old story • M. Faraday, 1824, modification of the glass color when exposed to sun light Edmond Becquerel , La lumière: ses causes et • Pelouze, 1867, glass coloration observed when ses effets , Vol. 2 (Paris, France: F. Didot, 1868 ) the glass contains Mn or Fe • E. Becquerel, 1868, process involving a modification of the oxydation state of Mn, Fe • P. Curie, 1899, Radium colors or blackens glasses Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 3

  4. Pierre and Marie Curie in their laboratory, where radium was discovered. Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 4

  5. Glass and radiation: an old story • Doelter, 1910, a review of the coloration of glasses by the action of rays from radium Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 5

  6. Nuclear Glass or GCM: What type of radiation? Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 6

  7. Nuclear Glass or GCM: What type of radiation? Minor actinides: mainly α decays Fission products: mainly β decays Spontaneous fission Most of alpha and beta decays Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 7

  8. Interaction with matter Due to the various decays: Emission of particles with high amount of energy Solid Implanted ion M 2 , Z 2 electronic h n V=0 capture e - e - Ion ionization e - M 1 , Z 1 Ionization of of target Sputtered incident ion atoms Displacment atom cascade Se = (dE/dx) elec = Electronic energy loss due to collisions with electrons Sn = (dE/dx) nucl = Nuclear energy loss due to collisions with atoms S e >S e threshold S e <S e threshold S n Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 8

  9. Interaction with matter Important parameters to consider: • Dose rate : absorbed energy per unit of mass of material per unit of time (Gy/s) • Dose : absorbed energy per unit of mass of material (Gy = J/kg) 5 10 electronic collision,  decay Up to 10 GGy electronic collision,  decay,  transition 10 10 4 10 electronic collision nuclear collision 3 10 9 10 Absorbed Dose (Gy) 10 4 to 10 Gy/h Up to 0.1 GGy Dose rate (Gy/h) 2 10 8 10 1 10 7 10 0 10 electronic collision,  decay 6 10 electronic collision,  decay,  transition -1 10 electronic collision nuclear collision 5 -2 10 10 0 1 2 3 4 5 6 0 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Waste Storage Time (years) Waste Storage Time (years) Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 9

  10. Interaction with matter • Nuclear collisions, dpa = displacements per atom All the atoms have been displaced 1 HLW glass 10 HLW glass with higher MA 239 PuO 2 HLW glass + 10% 0,1 1 He (at%) dpa 0,01 T D =Energy available for damage 0,1 production E 0 =Energy of the particle 1E-3 F D,e =Energy lost to electronic stopping 0,01 1 2 3 4 5 6 10 10 10 10 10 10 E d =Threshold displacement energy Time (years) Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 10

  11. Nuclear Glass or GCM: a complex ageing scenario Metallic Lithostatic Containers Leaching containers stress corrosion RN release Glass Hundreds to Thousands to hundreds of Near-field materials thousands years thousands years Temperature Dose rate Activity Irradiation dose dpa, He Water resaturation time Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 11

  12. Nuclear Glass or GCM: a complex ageing scenario Metallic Containers Leaching containers corrosion RN release Glass Hundreds to Thousands to hundreds of Near-field materials thousands years thousands years Q1: Stability of the metastable glassy state under irradiation (dose and dose rate) ? Q2: Waste mechanical degradation? Cracking due to Rad Effects and He generation? Q3: Effect of radiation on the confinement properties? Leaching behavior? Coupling with the surrounding materials? Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 12

  13. Methodology to study radiation effects at CEA • Accelerate the time scale • Dissociate the effects of beta and alpha decays ( electronic / nuclear stopping power ) and helium generation • Evaluate the effects on the confinement properties and the glass structure Propose some models to explain the glass behavior under irradiation Atalante DHA, CEA Comparison JANNuS Saclay, Orsay, GANIL, SIRIUS 1. Actinide doped glasses 244 Cm, 239 Pu, 241 Am… 1. External irradiation with electrons or light and heavy ions OSIRIS, CEA He Au, Kr 3. In pile irradiation : 10 B(n,  ) 7 Li MD, CEA DM, CEA 4. Molecular dynamic modeling of ballistic effects Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 13

  14. Methodology to study radiation effects at CEA Cm doped glass Au (1 to 7) MeV Kr (400 KeV) Alpha decay dose 10 B(n,  ) 7 Li scale or time scale He (1.7MeV) Osiris 24 10 -3 ) Deposited electronic energy (KeV.cm ~ 100000 years of storage of nuclear glass 23 10 19  /g 10 Electron irradiation 5 to 10 years of storage of 244 Cm glass 22 10 18  /g 10 21 10 17  /g 10 20 10 Molecular dynamic simulation 19 10 18 19 20 21 22 10 10 10 10 10 -3 ) Deposited nuclear energy (KeV.cm Simulation of at least 100000 years Light ions irradiations (He) : mainly electronic interactions of disposal by Heavy ions irradiations (Kr, Au) : mainly nuclear interactions various methods ! Doped glasses and OSIRIS irradiation : electronic and nuclear interactions Molecular Dynamics : only nuclear interactions Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 14

  15. Nuclear Glass or GCM under irradiation: What do we know? Joint ICTP-IAEA Workshop – Trieste CEA/DEN/MAR/DTCD/SECM S. Peuget 15

  16. Nuclear Glass or GCM under irradiation: What do we know? Q1: Stability of the metastable glassy state ? • How radiation can affect the glassy state? • Can irradiation favor or reduce the crystallization, the phase separation of a glass? • Can irradiation induce a radiolytic decomposition of the glass? Oxygen bubbles … • What is the effect of the dose and dose rate on these processes? How to extrapolate to the storage conditions? | PAGE 16

  17. Q1: STABILITY OF THE METASTABLE GLASSY STATE ? Phase separation, bubble formation ? e - irr. very high dose rate: 10 9 x greater Ca-Borosilicate Glass Observed under electron irradiation TEM studies Highly dependent of the glass composition Li-Borosilicate Glass Na-Borosilicate Glass Sun, Microscopy and Analysis 106 (2005) Ollier, JAP 99 (2006) Jiang, JAP 92 (2002)

  18. Q1: STABILITY OF THE METASTABLE GLASSY STATE ? Phase separation, bubble formation ? e - irr. very high dose rate: 10 9 x greater Several contributions:  Bond breaking, alkali migration Jiang, JAP 92 (2002)  Modification of the glass chemical composition Sun, NIMB 218 (2004) (Electron Stimulated Desorption) Mir, JNCS 453 (2016) Favors oxygen bubbles and phase separation

  19. Q1: STABILITY OF THE METASTABLE GLASSY STATE ? Phase separation, bubble formation ? e - irr. very high dose rate: 10 9 x greater Several contributions:  Modification of the glass viscosity o Very high dose rate (10 orders of magnitude higher than expected in HLW glass) o Bond breaking o Chemical composition changes Favors oxygen bubbles and phase separation  (T) viscosity of an non-irradiated material, α e efficiency of electron beam bond breaking and annihilation Α e I e dimensionless electron flux density Ojovan, Mater. Res. Soc. Symp. Proc. Vol. 1193 (2009) MÖbus, JNM 396 (2010)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend