quasi maximum likelihood estimation for multivariate
play

Quasi-maximum likelihood estimation for multivariate CARMA processes - PowerPoint PPT Presentation

Quasi-maximum likelihood estimation for multivariate CARMA processes Quasi-maximum likelihood estimation for multivariate CARMA processes Eckhard Schlemm Institute for Advanced Study, Technische Universitt Mnchen 2 nd Northern Triangular


  1. Quasi-maximum likelihood estimation for multivariate CARMA processes Quasi-maximum likelihood estimation for multivariate CARMA processes Eckhard Schlemm Institute for Advanced Study, Technische Universität München 2 nd Northern Triangular Seminar Stockholm, 17 March 2010 1/26

  2. Quasi-maximum likelihood estimation for multivariate CARMA processes Outline Preliminaries Motivation Multivariate CARMA processes Main results Probabilistic properties of the sampled process Identifiability and quasi-maximum likelihood estimation Implementation and application Canonical parametrizations Simulation study Example from Economics Summary and future work 2/26

  3. Quasi-maximum likelihood estimation for multivariate CARMA processes Preliminaries Motivation Introduction Versatile class of auto-regressive moving-average processes X n − ϕ 1 X n − 1 − . . . − ϕ p X n − p = ε n + θ 1 ε n − 1 + . . . + θ q ε n − q Extensions to ◮ multivariate models (Vector ARMA) ◮ continuous-time models (CARMA) Advantages: ◮ Modelling of dependent time series ◮ High-frequency and/or irregularly spaced observations Problem : Estimation 3/26

  4. Quasi-maximum likelihood estimation for multivariate CARMA processes Preliminaries Multivariate CARMA processes Multivariate CARMA processes R m -valued Lévy process L satisfying E || L (1) || 2 < ∞ . An R d -valued second-order MCARMA(p,q) process solves D ≡ d P ( D ) Y ( t ) = Q ( D ) D L ( t ) , dt. Auto-regressive polynomial P ( z ) ≔ I d z p + A 1 z p − 1 . . . + A p ∈ M d ( R [ z ]) Moving-average polynomial Q ( z ) ≔ B 0 z q + B 1 z q − 1 . . . + B q ∈ M d,m ( R [ z ]) 4/26

  5. Quasi-maximum likelihood estimation for multivariate CARMA processes Preliminaries Multivariate CARMA processes Multivariate CARMA processes Stationary solution to continuous-time state space model state equation d X ( t ) = A X ( t ) dt + B d L ( t ) observation equation Y ( t ) = [ I d , 0 d , . . . , 0 d ] X ( t ) ,  0 I d 0 . . . 0  . ... .   0 0 I d .     . A = ... ... , .   0 .     0 0 . . . . . . I d   − A p − A p − 1 − A 1 . . . . . . � p − j − 1 � � β T � T , � β T B = · · · β p − j = − I [0: q ] ( j ) A i β p − j − i + B q − j 1 p i =1 4/26

  6. Quasi-maximum likelihood estimation for multivariate CARMA processes Preliminaries Multivariate CARMA processes State space models I General N -dimensional continuous-time state space model: state equation d X ( t ) = A X ( t ) dt + Bd L ( t ) observation equation Y ( t ) = C X ( t ) , A ∈ M N ( R ) , B ∈ M N,m ( R ) , C ∈ M d,N ( R ) Sufficient condition for stationarity of the state process X : Re λ ν < 0 , λ ν , ν = 1 , . . . , N, eigenvalues of A. 5/26

  7. Quasi-maximum likelihood estimation for multivariate CARMA processes Preliminaries Multivariate CARMA processes State space models II X satisfies � t X ( t ) = e A ( t − s ) X ( s ) + s e A ( t − u ) Bd L ( u ) The output process Y satisfies � t −∞ Ce A ( t − u ) Bd L ( u ) . Y ( t ) = Its spectral density is given by f Y ( ω ) = 1 2 πC ( iω − A ) − 1 B Σ L B T ( − iω − A T ) − 1 C T . 6/26

  8. Quasi-maximum likelihood estimation for multivariate CARMA processes Preliminaries Multivariate CARMA processes Equivalence of MCARMA und multivariate state space models Theorem The stationary solution Y of the multivariate state space model ( A, B, C, L ) is an L -driven MCARMA process with auto-regressive polynomial P and moving-average polynomial Q if and only if C ( zI N − A ) − 1 B = P ( z ) − 1 Q ( z ) , ∀ z ∈ C . 7/26

  9. Quasi-maximum likelihood estimation for multivariate CARMA processes Preliminaries Multivariate CARMA processes A useful decomposition Theorem Let Y be the output process of the SSM ( A, B, C, L ) , ◮ A ∈ M N ( R ) ◮ λ i ∈ σ ( A ) , λ i � λ j ∃ vectors s 1 , . . . , s N ∈ C m \{ 0 m } and b 1 , . . . , b N ∈ C d \{ 0 d } such that � t N −∞ e λ ν ( t − u ) d � s ν , L ( u ) � . � Y ( t ) = Y ν ( t ) , Y ν ( t ) = b ν ν =1 8/26

  10. Quasi-maximum likelihood estimation for multivariate CARMA processes Main results Probabilistic properties of the sampled process Probabilistic properties of the sampled process We observe the process Y at discrete, equally spaced times Y ( h ) n ∈ Z , ≔ Y ( nh ) , h > 0 . n Linear innovations ε ( h ) = Y ( h ) n − P n − 1 Y ( h ) ( ε ( h ) n , n ) n ∈ Z ∼ white noise n ↑ � � Y ( h ) orthogonal projection onto span : −∞ < ν < n ν We define the polynomial N � � � 1 − e − λ ν h z ∈ C [ z ] . ϕ ( z ) = ν =1 9/26

  11. Quasi-maximum likelihood estimation for multivariate CARMA processes Main results Probabilistic properties of the sampled process VARMA structure of Y ( h ) Theorem There exists a stable monic polynomial Θ ∈ M d ( C [ z ]) of degree at most N − 1 such that = Y ( h ) ϕ ( B ) Y ( h ) = Θ( B ) ε ( h ) B j Y ( h ) n , n − j , n n holds. ⇒ Y ( h ) is a weak VARMA( N, N − 1) process. 10/26

  12. Quasi-maximum likelihood estimation for multivariate CARMA processes Main results Probabilistic properties of the sampled process The innovations process First r eigenvalues real: λ ν ∈ R for 1 ≤ ν ≤ r ; λ ν = λ ν +1 ∈ C \ R for ν = r + 1 , r + 3 . . . , N − 1 . � h 0 e ( h − u ) λ ν d L ( u ) M ν = � T � M T 1 · · · M T r , re M T r +1 , im M T r +1 · · · re M T N − 1 , im M T M = N − 1 Theorem If M has a non-trivial absolutely continuous component with respect to λ mN the innovations process ε ( h ) is strongly mixing with exponentially decaying coefficients. 11/26

  13. Quasi-maximum likelihood estimation for multivariate CARMA processes Main results Identifiability and quasi-maximum likelihood estimation Parameter identifiability in MCARMA models I Quasi-maximum likelihood approach + discrete observations ⇒ distinction between models based only on second-order properties of the sampled process Definition (Identifiability) A collection of continuous-time stochastic processes ( Y ϑ , ϑ ∈ Θ) is identifiable if for any ϑ 1 � ϑ 2 the two processes Y ϑ 1 and Y ϑ 2 have different spectral densities. It is h -identifiable , h > 0 , if for any ϑ 1 � ϑ 2 the two processes Y ( h ) ϑ 1 and Y ( h ) ϑ 2 have different spectral densities. 12/26

  14. Quasi-maximum likelihood estimation for multivariate CARMA processes Main results Identifiability and quasi-maximum likelihood estimation Parameter identifiability in MCARMA models II ψ : R q ⊃ Θ ∋ ϑ �→ ( A ϑ , B ϑ , C ϑ , L ϑ ) , Θ compact. Assumption (Minimality) For all ϑ ∈ Θ the triple ( A ϑ , B ϑ , C ϑ ) is minimal in the sense C ( zI m − A ) − 1 B = C ϑ ( zI N − A ϑ ) − 1 B ϑ ⇒ m ≥ N. Assumption (Eigenvalues) For all ϑ ∈ Θ the spectrum of A ϑ is contained in the strip { z ∈ C : − π/h < Im z < π/h } . 13/26

  15. Quasi-maximum likelihood estimation for multivariate CARMA processes Main results Identifiability and quasi-maximum likelihood estimation Parameter identifiability in MCARMA models III Theorem Parametrization ψ : Θ ⊃ ϑ �→ ( A ϑ , B ϑ , C ϑ , L ϑ ) ◮ identifiable ◮ "Minimality" ◮ "Eigenvalues" Then the corresponding collection of output processes { Y ϑ , ϑ ∈ Θ } is h -identifiable. 14/26

  16. Quasi-maximum likelihood estimation for multivariate CARMA processes Main results Identifiability and quasi-maximum likelihood estimation Gaussian maximum likelihood estimation I The QML estimator of ϑ based on y L = ( y 1 , . . . , y L ) is L ≔ argmax ϑ ∈ Θ L ϑ ˆ � y L � true parameter ϑ 0 ∈ int Θ , ϑ , where the Gaussian likelihood function is � L � − 1 / 2 L � � − 1 � y L � � � e T ϑ ,n V − 1 ∼ L ϑ det V ϑ ,n exp ϑ ,n e ϑ ,n 2 n =1 n =1 and e ϑ ,n = y n − P n − 1 Y ( h ) � � , � �� ϑ ,n Y ( h ) ϑ ,ν = y ν :1 ≤ ν<n � � � Y ( h ) � e ϑ ,n e T V ϑ ,n = E ϑ ,ν = y ν : 1 ≤ ν < n . � ϑ ,n 15/26

  17. Quasi-maximum likelihood estimation for multivariate CARMA processes Main results Identifiability and quasi-maximum likelihood estimation Gaussian maximum likelihood estimation II The sampled process Y ( h ) satisfies the discrete-time state space model = e Ah X ( h ) X ( h ) n − 1 + Z n , n Y ( h ) = C X ( h ) n , n where the i.i.d. sequence ( Z n ) n ∈ Z is given by � nh ( n − 1) h e A ( nh − u ) Bd L ( u ) . Z n = ◮ Kalman Filter ◮ Numerical maximization 16/26

  18. Quasi-maximum likelihood estimation for multivariate CARMA processes Main results Identifiability and quasi-maximum likelihood estimation QML estimation - Consistency Assumption: h-identifiable parametrization Theorem (Strong consistency) L is For every sampling interval h > 0 , the QML estimator ˆ ϑ strongly consistent, i.e. L → ϑ 0 ˆ a.s. as L → ∞ . ϑ 17/26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend