quasi equilibrium construction for long time glassy
play

Quasi equilibrium construction for long time glassy dynamics - PowerPoint PPT Presentation

Quasi equilibrium construction for long time glassy dynamics Pierfrancesco Urbani Dipartimento di Fisica Universit di Roma, La Sapienza Laboratoire de Physique Thorique et Modles Statistiques Universit Paris-Sud


  1. Quasi equilibrium construction for long time glassy dynamics Pierfrancesco Urbani Dipartimento di Fisica Università di Roma, La Sapienza Laboratoire de Physique Théorique et Modèles Statistiques Université Paris-Sud pierfrancesco.u@gmail.com In collaboration with: Silvio Franz, Giorgio Parisi 19 July, 2013 Yukawa Institute, Kyoto P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 1 / 16

  2. Overview Overview of the talk • Dynamics of glassy systems • Mean Field disordered systems • Langevin Dynamics • Supersymmetric approach • The Potential Method • The Boltzmann Pseudodynamics • Application to mean field spin glass systems • Results in the replicated liquid theory • Dynamical Ornstein-Zernike equations • HNC closure • Conclusions and perspectives P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 2 / 16

  3. Dynamics of glassy systems 1 0.8 0.6 T = T MCT C ( t ) 0.4 0.2 0 10 − 2 10 0 10 2 10 4 10 6 t Two exponents: C ( t ) ≃ q EA + c 1 t − a + ... C ( t ) ≃ q EA + c 2 t b + ... The λ exponent is defined by λ = Γ 2 ( 1 − a ) Γ ( 1 − 2 a ) = Γ 2 ( 1 + b ) γ = 1 2 a + 1 τ α ∼ | T − T d | − γ 2 b = f ( λ ) Γ ( 1 + 2 b ) P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 3 / 16

  4. Dynamics from statics: first steps Mean Field models (Caltagirone, Ferrari, Leuzzi, Parisi, Ricci-Tersenghi, Rizzo, 2011) → schematic mode coupling equations: Ingredients (Kurchan 1992): • Langevin Dynamics • Martin-Siggia-Rose functional • Supersymmetric formalism • Dynamical action • Saddle point equations → schematic mode coupling equation • ultrafast motion limit ("replicas = supertimes") λ = w 2 w 1 where w 1 and w 2 are two of the cubic coefficient of a replica field theory action that can be written from the statics. P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 4 / 16

  5. The Potential Method Consider a system with hamiltonia H J ( σ ) where J is an internal quenched disorder and σ is the configuration of the internal degrees of freedom. Define the potential (Franz Parisi 1995) e − β H J [ τ ] 1 � V ( q ) = − lim log Z J [ q , τ ] N β E J Z J N →∞ τ where � � e − β H J [ σ ] δ ( q − q ( σ, τ )) Z J [ q , τ ] = Z J = d qZ J [ q , τ ] σ 0.02 T=T d T=T g 0.015 T=T K V(q) 0.01 0.005 0 0 0.2 0.4 0.6 0.8 1 q P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 5 / 16

  6. The Boltzmann Pseudodynamics Let us consider a generalization of the Franz-Parisi potential. We define the potential of a chain of coupled systems of length L the following way (Franz Parisi, 2012) L − 2 1 1 � � { β k } ; { ˜ � � Z e − β 1 H J [ σ 1 ] � V C ( k − 1 , k ) } = − lim . . . M ( σ k + 1 | σ k ) × N E J N →∞ σ 1 σ L − 1 k = 1 � � � ˜ e − β L H J [ σ L ] δ × ln C ( L − 1 , L ) − q ( σ L − 1 , σ L ) σ L and 1 � � Z ( σ k − 1 ) e − β k H J [ σ k ] δ ˜ M ( σ k | σ k − 1 ) = C ( k − 1 , k ) − q ( σ k − 1 , σ k ) � � � ˜ e − β k H J [ σ k ] δ Z ( σ k − 1 ) = C ( k − 1 , k ) − q ( σ k − 1 , σ k ) . σ k We considered the most general case where the temperature of each system is different one from another. The kernel M ( σ k | σ k − 1 ) defines the Boltzmann Pseudodynamics Markov Chain. P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 6 / 16

  7. Schematic models - p -spin (1) Let us consider the p -spin spherical model. The replica method can be employed to treat the logarithm and the factors Z ( σ k − 1 ) − 1 . In this way we have a replicated chain. For each system we have a certain number of replicas that eventually will be sent to zero. By averaging over the disorder, the potential becomes a function of the overlap N Q ab ( t , s ) = 1 � σ ( a ) ( t ) σ ( b ) ( s ) i i N i = 1 and the action for the potential becomes n t n s L S ( Q ) = β 2 Q ab ( t , s ) p + 1 � � � 2 ln det Q 4 t , s = 1 a = 1 b = 1 We must choose a parametrization for the overlap matrix that is compatible with the constraints. P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 7 / 16

  8. Schematic models - p -spin (2) Replica symmetric parametrization for the overlap matrix Q ab ( t , s ) = C ( t , s ) + δ ab δ su ∆ C ( s , s ) + Θ > ( s − t ) δ a 1 ∆ C ( t , s )+ + Θ > ( t − s ) δ a 1 ∆ C ( s , t ) ∆ C ( t , s ) = ˜ C ( t , s ) − C ( t , s ) We want to optimize over the free parameter of the overlap matrix. However, as in the standard potential method, we will search for a stationary point of the potential with respect to all the constraints. In this way we will optimize over all the parameters of Q . The saddle point equations are L n z β 2 p [ Q ac ( k , z )] p − 1 Q cb ( z , j ) + δ kj δ ac − ν k Q ab ( k , j ) = 0 � � 2 z = 1 c = 1 In the limit in which the chain becomes infinitely long we put the crucial ansatz 1 β R ( u , s ) d s = Θ > ( u − s ) ∆ C ( s , u ) that can be justified by an explicit computation of the response function within the Boltzmann pseudodynamics process. P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 8 / 16

  9. Schematic models - p -spin (3) The crucial result is that L n z � [ Q ac ( k , z )] p − 1 Q cb ( z , j ) = � � d c Q ( a , c ) p − 1 Q ( c , b ) lim { n ( t ) }→ 0 z = 1 c = 1 The resulting equations are ν ( t ) C ( t , u ) = β 2 p C p − 1 ( t , u ) ∆ C ( u , u ) + ∆ C p − 1 ( t , t ) C ( t , u ) + C p − 1 ( t , 0 ) C ( u , 0 )+ � 2 � u � t + 1 d z C p − 1 ( t , z ) R ( u , z ) + p − 1 � d z C p − 2 ( t , z ) R ( t , z ) C ( z , u ) β β 0 0 � 1 β ν ( t ) R ( t , u ) = β 2 p 1 β ∆ C p − 1 ( t , t ) R ( t , u ) + p − 1 C p − 2 ( t , u ) R ( t , u ) ∆ C ( u , u )+ 2 β � t � p − 1 d z C p − 2 ( t , z ) R ( t , z ) R ( z , u ) β 2 u ν ( t ) ∆ C ( t , t ) = β 2 p 2 ∆ C p − 1 ( t , t ) ∆ C ( u , u ) + 1 . By imposing ∆ C ( t , t ) = 1 − q d we recover the dynamical equation in the α regime. P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 9 / 16

  10. The Boltzmann Pseudodynamics for structural glasses -(1) Consider a replicated system of particles so that we can define the fields N � δ ( x − x ( a ) � δ ( x − x ( a ) ) δ ( y − x ( b ) ρ a ( x ) = � ) � ρ ab ( x ; y ) = � ) � i i j i = 1 [ ij ] ρ ab ( x , y ) h ab ( x , y ) = ρ a ( x ) ρ b ( y ) − 1 And the replicated Ornstein-Zernike equations that defines the direct correlation function n � � c ab ( x , y ) = h ab ( x , y ) − d z h ac ( x , z ) ρ c ( z ) c cb ( z , y ) c = 1 We will consider solutions such that ρ a ( x ) = ρ . Note that in the OZ equation there is the product between the matrix h and the matrix c . P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 10 / 16

  11. The Boltzmann Pseudodynamics for structural glasses -(2) Put now the pseudodynamics ansatz h ab ( x ) = h ( s , u ; x ) + δ ab δ su ∆ h ( s , s ; x ) + Θ > ( u − s ) δ a 1 ∆ h ( s , u ; x )+ + Θ > ( s − u ) δ b 1 ∆ h ( s , u ; x ) 1 β R h ( q ; u ; s ) d s = Θ > ( u − s ) ∆ h ( q ; s , u ) and the analogous expression for the direct correlation function. The OZ equations become h ( q ; s , u ) = c ( q ; s , u ) + ρ [ h ( q ; s , 0 ) c ( q ; 0 , u ) + h ( q ; s , u ) ∆ c ( q ; u , u )+ � u � s � + ∆ h ( q ; s , s ) c ( q ; s , u ) + 1 d zh ( q ; s , z ) R c ( q ; u , z ) + 1 d zR h ( q ; s , z ) c ( q ; z , u ) β β 0 0 ∆ h ( q ; s , s ) = ∆ c ( q ; s , s ) + ρ∆ h ( q ; s , s ) ∆ c ( q ; s , s ) R h ( q ; u , s ) = R c ( q ; u , s ) + ρ [ R h ( q ; u , s ) ∆ c ( q ; u , u ) + ∆ h ( q ; s , s ) R c ( q ; u , s )+ � u + 1 � d zR h ( q ; z , s ) R c ( q ; u , z ) . β s P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 11 / 16

  12. The Boltzmann Pseudodynamics for structural glasses -(3) We have to choose a closure for the OZ equations. We choose HNC. ln [ h ab ( x , y ) + 1 ] + βφ ab ( x , y ) = h ab ( x , y ) − c ab ( x , y ) Putting the BPD ansatz in the equation we get ln [ h ( x ; s , u ) + 1 ] = h ( x ; , s , u ) − c ( x ; s , u ) h ( x ; s , u ) R c ( x ; s , u ) = R h ( x ; s , u ) 1 + h ( x ; s , u ) . and moreover that ∆ h ( q , s , s ) and ∆ c ( q , s , s ) are actually s independent. We can now analyze the full set of equations. First we go to the equilibrium regime and we see that the equations admits a solution that satisfies TTI + FDT − β d h ( x ; s − u ) = R h ( x ; s − u ) d s P. Urbani (La Sapienza, LPTMS) Boltzmann Pseudodynamics July 2013 12 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend