quantum gravity and finite cut off ads
play

Quantum Gravity and finite cut-off AdS Pawel Caputa YITP Kyoto - PowerPoint PPT Presentation

Quantum Gravity and finite cut-off AdS Pawel Caputa YITP Kyoto QIST2019, 24.06.2019 Based on: Sphere partition functions and cut-off AdS JHEP 1905 (2019) 112 with Shouvik Datta (UCLA) and Vasudev Shyam (PI) also earlier work: Airy


  1. Quantum Gravity and finite cut-off AdS Pawel Caputa YITP Kyoto QIST2019, 24.06.2019

  2. Based on: “Sphere partition functions and cut-off AdS” JHEP 1905 (2019) 112 with Shouvik Datta (UCLA) and Vasudev Shyam (PI) also earlier work: “Airy function and 4d quantum gravity” JHEP 1806 (2018) 106 with Shinji Hirano (WITS) Part of the TT story at this workshop: Shyam, Datta, Rolf, Soni, Silverstein, Verlinde, Song, Nomura, Apolo,… (I will try not to overlap too much)

  3. Plan: Summary • TT flow and sphere partition functions • QGR: Wheeler-DeWitt equation • It from Qubit physics and TT • Open Questions •

  4. Take-home (reminder): AdS/CFT: Tool to understand hol. CFT (QFTs) using Quantum Gravity QGR in AdS Holographic CFT (Quantum) Gravity is the most efficient way of doing (hol.) QFTs!

  5. Summary : “Radial Hamiltonian” constraint is a powerful tool in AdS/CFT (any dim.)! Classically: It can be interpreted as a (TT) flow equation in holographic CFTs that reproduces non-trivial features of finite cut-off AdS/CFT. This talk: Sphere partition functions and RT formula at finite cut-off. Quantum: Wheeler-DeWitt equation in minisuperspace becomes a differential equation that captures information about finite-N partition functions. This talk: ABJM sphere partition function (Airy) that contains all orders contributions from perturbative quantum gravity.

  6. “It from GR” (Gauss-Codazzi or quantum WDW) ds 2 = dr 2 + γ ij ( r, x ) dx i dx j In the (radial) ADM decomposition Einstein equations can be written as ( [Skenderis,Papadimitriou’04] ) K 2 � K ij K ij ˜ R + 2 κ 2 T d +1 d +1 , = r i K i κ 2 T jd +1 , j � r j K = ✓ ◆ 1 ˙ ˜ K i j + K K i R i T i σ δ i j � κ 2 = j � d � 1 T σ j j Just pure gravity (cc) the “radial Hamiltonian” constraint R + d ( d − 1) K 2 − K ij K ij = ˜ . l 2 p γ p γ π i With canonical momenta π ij = κ 2 ( K γ ij � K ij ) , i = κ 2 ( d � 1) K, p γ κ 2  �  � 1 R + d ( d � 1) ˜ i ) 2 π ij π ij � d � 1( π i + = 0 . p γ κ 2 l 2 (QGR: WDW eq. see later)

  7. AdS/CFT flow equation from Gauss-Codazzi [McGough’18] [Kraus,Liu,Marolf’18] [Taylor’18] [Hartman et al.’18] Pure gravity R + d ( d − 1) K 2 − K ij K ij = ˜ . l 2 [Balasubramanian,Kraus’99] Given a general holographic energy-momentum tensor h T ij i = � 1  K ij � K γ ij � d � 1 � l and a d = � a d C ij γ ij ( d − 2) κ 2 κ 2 l ˆ GC can be rewritten as a “flow equation” T ij = T ij + a d C ij , i = � l κ 2  1 ⌘ 2 � l T ij � ⇣ ˆ T ij ˆ ˆ ˆ 2 κ 2 ˜ T i T i � R. [Taylor’18] i 2 d � 1 c γ b γ ij ! r 2 ij , T And translated/interpreted as a large N QFT flow ( etc.) h T i i i = � d λ h X d i

  8. [Hartman,Krutho ff ,Shaghoulian,Tajdini’18] Large N Flow equation [PC,Datta,Shyam’19] ˆ In terms of the “renormalized” EM tensor T ij = T ij + a d C ij ,  1 i ) 2 + 2 ↵ d ✓ 1 ◆ T ij T ij − T ij C ij − T i d − 1( T i d − 1 T i i C i = − d � i i d − 2 � d ✓ ↵ d ◆# ◆ 2 ✓ 1 ◆ + 1 ✓ ( d − 2) ↵ d ˜ C ij C ij − i ) 2 d − 1( C i R + C i + i d − 2 d − 2 2 d � � � d d with “dictionary” for λ , α d λ = l κ 2 lr d − 2 α d c ⌘ , ( d � 2) κ 2 , d − 2 2 dr d λ d c Matching with anomalies and known holographic setups we have e.g. α 6 = N (2 , 0) N ABJM α 4 = N SYM α 3 = 6 2 1 / 3 π 2 / 3 , 2 7 / 2 π , 24 π , IDEA: We can define (effective) “TT-deformed” hol. CFTs dual to AdS with finite cut-off by the above flow equation.

  9. Holographic sphere partition functions in cut-off AdS One of the oldest and very interesting holographic probes Precision tests of AdS/CFT (localization) Even-d: sensitive to a-type holographic anomalies “Good” holographic measure of degrees of freedom Closely related to entanglement entropy See also applications in dS/dS [Gorbenko,Silverstein,Torroba’18]

  10. Holographic sphere partition functions and EM tensor Gravity Action on − shell = − 1 Z d d +1 x √ g ( R − 2 Λ ) + 1 Z d d x √ γ K + S ct , I ( d +1) 2 κ 2 κ 2 M ∂ M [Emparan,Johnson,Myers’99] Holographic counter-terms (up to d=6) " ◆# c (2) c (3) d l 3 S ct = 1 d − 1 ✓ Z d l d d d x √ γ R ij ˜ c (1) ˜ ˜ ˜ R 2 + R + R ij − d κ 2 2( d − 4)( d − 2) 2 2( d − 2) 4( d − 1) l ∂ M (2.2) On-shell solution d ≡ l 2 dr 2 ds 2 = l 2 dr 2 2 l 2 + r 2 + r 2 d Ω 2 l 2 + r 2 + γ ij ( r, x ) dx i dx j , d Holographic Partition functions E-M tensor (Brown-York) δ I ( d +1) on − shell [ r ] ij [ r ] ≡ − 2 log Z S d [ r ] = − I ( d +1) on − shell [ r ] T d , √ γ δγ ij

  11. Sphere partition function in cut-off AdS [PC,Datta,Shyam’19] The large N sphere partition function in finite cut-off holography , � r 2 log Z S d [ r c ] = � dS d r d  ✓ ◆ � l � 1 2 , d � 1 , d + 1 c c 2 F 1 κ 2 l l 2 r c 2 2 # + c (2) � c (3) l 2 l 4 ( d � 1) d ( d � 1) d ( d � 1) + c (1) d r 2 r 4 d 2( d � 2) 8( d � 4) c c Holographic energy-momentum tensor s " # + c (2) − c (3) d l 2 d l 4 1 + l 2 ij [ r c ] = ( d − 1) c (1) T d γ ij . ≡ ω [ r c ] γ ij − d κ 2 l 2 r 2 8 r 4 r 2 c c c They satisfy d d x p γ h T i Z i i = � r d r c ∂ r c log Z S d [ r c ] = � c S d d ω [ r c ] ,

  12. Holographic Field Theory [PC,Datta,Shyam’19] 4 h T ij i = ω d γ ij For the spheres the symmetry fixes This way the flow equation becomes quadratic equation for ω d  � d d + 2 α d 1 i ω d � 1 α d d � 1 ω 2 d � 1 C i d ω d = d λ d f d ( R ) d − 2 d − 2 d λ λ λ d The two solutions are (- to match anomalies) 0 1 v ! 2 u 2 2 2 = d � 1 @ 1 � 2 α d λ 1 � 2 α d λ + 4 α d λ d d d u ω ( ± ) d � 1 C i d � 1 C i d � 1 f d ( R ) i ± B C t d i 2 d λ A C ij with explicit form of and holographic dictionary we reproduce the gravity bulk computation from the TT flow equation!

  13. Wheeler-DeWitt equation in mini-superspace [PC,S.Hirano’18] Quantum Gravity Path-Integral in the “minisuperspace” approximation ds 2 = N 2 ( r ) dr 2 + a 2 ( r ) d Ω 2 d , Quantum Gravity action (q=a^2 for a canonical kinetic term)  q 0 2 q d � 3 + l � 2 q d � 2 �� S EH + S GH = − d ( d − 1) S d Z � 4 N + N dr 2 κ 2 Hamiltonian " # ◆ 2 � 2 κ 2 ✓ d ( d − 1) S d l 2 q d − 3 + q d − 2 � H = N ˆ p 2 − H = − S d d ( d − 1) N 2 κ 2 l Quantum Wheeler-DeWitt equation " # ◆ 2 � ~ 2 d 2 ✓ d ( d − 1) S d l 2 q d − 3 + q d − 2 � ˆ H Ψ [ q ] = Ψ [ q ] = 0 . dq 2 − 2 κ 2 l

  14. [deBoer,Verlinde,Verlinde’99] Wheeler-DeWitt equation: (HJ) WKB solution [PC,S.Datta,V.Shyam’19] Quantum Gravity “radial Hamiltonian” yields the WDW equation (q=a^2) " # ◆ 2 � ~ 2 d 2 ✓ d ( d − 1) S d l 2 q d − 3 + q d − 2 � ˆ H Ψ [ q ] = Ψ [ q ] = 0 . dq 2 − 2 κ 2 l Using the WKB expansion we have the leading order solution (HJ) ◆ Z q  ✓ d ( d − 1) S d � l 2 q d − 3 + q d − 2 dq p q = r 2 Ψ WKB ( q ) ≈ exp ± 2 κ 2 l ~ c 0 Which is precisely the “bare” gravity on-shell action with finite cut-off ◆� = e − ( I on − shell [ r c ] − S ct [ r c ] ) Ψ WKB [ r c ] GR [Freidel’08] Extra canonical transformation to include the counter-terms needed

  15. ABJM and the Airy function [Fuji,Hirano,Moriyama’11] [Marino,Putrov’12] [Hatsuda,Moriyama,Okuyama’12] "✓ π N 2 ◆ 2 / 3 ✓ ◆# 1 λ Z ABJM ( S 3 ) ∼ Ai 1 − + ~instant. √ 24 λ − 3 N 2 2 λ [Bergman,Hirano’09] Non-perturbative All orders pert. QGR.! [Klebanov,Tseytlin’96] Classical GR 1 3 x 3 / 2 ✓ 5 385 ◆ x 1 / 4 e − 2 Ai [ x ] ∼ 1 − 48 x 3 / 2 + 4608 x 3 + ... x − 3 / 2 ∼ N − 3 / 2 ∼ G N 2 loop QGR 3 loop QGR 1 loop QGR [Bhattacharyya,Grassi,Marino,Sen’12] [Dabholkar,Drukker,Gomes’14] Localization in SUGRA

  16. WDW and Airy [PC,S.Hirano’18] WdW equation in AdS in 4 dim. => Airy equation! [ N ℓ 2 ( q + ℓ 2 ) ] Ψ ( q ) = 0 d 2 9 π 2 dq 2 − 16 G 2 General (quantum) solution 2 2 ( 4 G N ) ( 4 G N ) 3 3 3 πℓ 2 3 πℓ 2 ( ℓ − 2 q + 1 ) ( ℓ − 2 q + 1 ) Ψ ( q ) = C 1 Ai + C 2 Bi Holographic dictionary (ABJM) and the decaying part for larger N (Ai, C2=0) 3 S 3 l 2 = π N 2 κ 2 √ 2 λ We find the relation (Pure Gravity!) Z ABJM ( S 3 ) ∼ Ai( x ) = Ψ W DW ( q → 0) ! ? Works for 1/2 BPS Wilson Loops!

  17. Is bulk really a Tensor Network? ? [Miyaji&Takayanagi’15] Surface/state-correspondence? Is TT-bar one realization of this correspondence?

  18. Finite cut-of RT from Sphere Partition Functions [Donnelly,Shyam’18] [PC,Datta,Shyam’19] [Banerjee,Bhattacharyya,Chakraborty’19] Given the partition function for a CFT on a replicated geometry d = n 2 sin 2 θ d τ 2 + d θ 2 + cos 2 θ d Ω 2 d Ω 2 d − 2 Trick: 1 � r ⇣ ⌘ S 1 = (1 � n ∂ n ) log Z n [ r ] | n → 1 = log Z S d [ r ] ( d ∂ r So using “bare” partition functions at scale r RT no c.t.! [Murdia,Nomura,Rath,Salzeta’19] , � r 2 S 1 = ( S d ✓ 1 2 , d � 1 , d + 1 ◆ r d − 1 2 F 1 l 2 8 π G N 2 2 This matches RT for (finite cut-off) surface with induced metric ds 2 = l 2 � d ρ 2 + sinh 2 ρ d Ω 2 � d − 2 Z ρ = l d − 1 S d − 2 A d ρ sinh d − 2 ρ S A = 4 G N 4 G N 0 Is it related to EE in TT deformed theory? Meaning on EE in TT?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend