ma match chin ing ti ti e q e qua uasi p i par tp tp n
play

Ma Match chin ing ti ti e Q e Qua uasi P i Par tp tp n Dis ts ts - PowerPoint PPT Presentation

Ma Match chin ing ti ti e Q e Qua uasi P i Par tp tp n Dis ts ts ibu tj tj on in a Momentu tum Su Sub ts ts ac ac tj tj on n Sc Sche heme me Yong Zhao Massachusetts Institute of Technology The 36th Annual International Symposium on


  1. Ma Match chin ing ti ti e Q e Qua uasi P i Par tp tp n Dis ts ts ibu tj tj on in a Momentu tum Su Sub ts ts ac ac tj tj on n Sc Sche heme me Yong Zhao Massachusetts Institute of Technology The 36th Annual International Symposium on Lattice Field Theory East Lansing, MI, USA 07/22-28, 2018 I. Stewart and Y.Z., PRD97 (2018), 054512 7/23/18 Lattice 2018, East Lansing 1

  2. Outline Renormalization of the quasi-PDF Matching between RI/MOM quasi-PDF and MSbar PDF The “ratio scheme” Lattice 2018, East Lansing 7/23/18

  3. Procedure of Systematic Calculation 1. Simulation of the quasi PDF 3. Subtraction of higher in lattice QCD twist corrections Z +1 Λ 2 ✓ M 2 ✓ x ◆ ◆ dy y , ˜ P z , µ µ QCD q i ( x, P z , ˜ ˜ µ ) = | y | C ij q j ( y, µ ) + O , , |y| P z P 2 P 2 � 1 z z 2. Renormalization of the lattice 4. Matching to the MSbar PDF. quasi PDF, and then taking the continuum limit Lattice 2018, East Lansing 7/23/18

  4. Renormalization The gauge-invariant quark Wilson line operator can be renormalized multiplicatively in the coordinate space: ( ) ψ (0) = Z ψ , z e − δ m | z | ψ ( z ) Γ W ( z ,0) R ! O Γ ( z ) = ψ ( z ) Γ W ( z ,0) ψ (0) X. Ji, J.-H. Zhang, and Y.Z., 2017; J. Green, K. Jansen, and F. Steffens, 2017; T. Ishikawa, Y.-Q. Ma, J. Qiu, S. Yoshida, 2017. Different renormalization schemes can be converted to each other in coordinate space; Z MS ( ε , µ ) 2 , µ R ! ! µ ) ! Q X ( ζ , z 2 µ R 2 ) = Q MS ( ζ , z 2 µ 2 ) = Z ' X ( z 2 µ R Q MS ( ζ , z 2 µ 2 ) Z X ( ε , z 2 µ R 2 ) Lattice 2018, East Lansing 7/23/18

  5. Regulator independence If we apply the same renormalization scheme in both lattice and continuum theories, ! − 1 ( z , ε , µ ) ! R ( z , µ ) = Z X O Γ ( z , ε ) O Γ − 1 ( z , a − 1 , µ ) ! O Γ ( z , a − 1 ) = lim a → 0 Z X This should apply to all renormalization schemes; After renormalization, we just need to calculate the matching coefficient in dimensional regularization; However, not all schemes can be implemented nonperturbatively on the lattice. Lattice 2018, East Lansing 7/23/18

  6. A momentum subtraction scheme Martinelli et al., 1994 Regulator-independent momentum subtraction scheme (RI/MOM): − 1 ( z , a − 1 , p R z , µ R ) p ! = p ! O Γ ( z , a − 1 ) p Z OM O Γ ( z ) p p 2 = µ R 2 tree p z = p R z p ! p ! O Γ ( z , a − 1 ) p O Γ ( z ) p p 2 = µ R 2 p 2 = µ R 2 z , µ R ) = p z = p R z p z = p R z Z OM ( z , a − 1 , p R = p ! z * z O Γ ( z ) p − ip R Γ ζ ) e (4 p R tree Can be implemented nonperturbatively on the lattice. Scales introduced in renormalization: µ R , p R z . 7/23/18 Lattice 2018, East Lansing

  7. Matching coefficient Strategy: Extracting matching coefficient by comparing the quasi-PDF and light-cone PDF in an off-shell quark state; Quark off-shellness p 2 < 0 regulates the infrared (IR) and collinear divergences; Lattice 2018, East Lansing 7/23/18

  8. One-loop Feynman diagrams z z z z k k k k p p p p p p p p q (1) q (1) q (1) ˜ tadpole ( z ) ˜ sail ( z ) ˜ vertex ( z ) Dimensional regularization d=4-2 ε ; Γ = γ z for discussion in this talk, Γ = γ t case calculated in Y.S. Liu et al. (LP 3 ), arXiv:1807.06566. External momentum p μ = ( p 0 ,0,0,p z ) and p 2 <0 ; Lattice 2018, East Lansing 7/23/18

  9. One-loop results I. Stewart and YZ, PRD 2018 One-loop bare matrix element: Z 1 ⇢ ≡ ( − p 2 − i " ) q (1) ( z, p z , 0 , − p 2 ) = ↵ s C F ⇣ e � ixp z z − e � ip z z ⌘ (4 p z ⇣ ) , ˜ dx h ( x, ⇢ ) p 2 2 ⇡ z �1 ln 2 x − 1 + √ 1 − ⇢  1 + x 2 1 � 8 ⇢ ⇢ 4 x ( x − 1) + ⇢ + 1 x > 1 √ 1 − ⇢ 1 − x − 2 x − 1 − √ 1 − ⇢ − > > 2(1 − x ) > > > ln 1 + √ 1 − ⇢ >  1 + x 2 > 1 � 2 x ⇢ < h ( x, ⇢ ) ≡ 0 < x < 1 , √ 1 − ⇢ 1 − x − 1 − √ 1 − ⇢ − 2(1 − x ) 1 − x > > ln 2 x − 1 − √ 1 − ⇢ >  1 + x 2 1 � > ⇢ ⇢ > > 2 x − 1 + √ 1 − ⇢ + 4 x ( x − 1) + ⇢ − 1 x < 0 √ 1 − ⇢ 1 − x − > : 2(1 − x ) Formally satisfies vector current conservation (v.c.c.), but: ∞ | x | →∞ h ( x , ρ )~ − 3 ∫ h ( x , ρ ) is logarithmically divergent needs ε to be regularized! lim 2| x |, dx −∞ This logarithmic divergence is what needs to be treated carefully for the MSbar scheme; Izubuchi, Ji, Jin, Stewart and Y.Z., 2018 Not a problem for the RI/MOM scheme! Lattice 2018, East Lansing 7/23/18

  10. RI/MOM renormalization q (1) R , µ R ) = � Z (1) q (0) ( z, p z ) . CT ( z, p z , p z OM ( z, p z ˜ R , 0 , µ R ) ˜ (29) Renormalization in coordinate space: (1) ( z , p z , p R z , − p 2 , µ R ) = ! z , µ R ) ! q (1) ( z , p z ,0, − p 2 ) + ! (1) ( z , p z , p R q OM q CT 2 − p 0 Z 1 2 ρ = − p 2 2 = p z q (1) ( z, p z , 0 , − p 2 ) = ↵ s C F ⇣ e � ixp z z − e � ip z z ⌘ < 1 in Minkowski space (4 p z ⇣ ) ˜ dx h ( x, ⇢ ) Z 2 p z p z 2 ⇡ ⇣ ⌘ �1 −∞ 4 ) 2 + ( p R Z ∞ r R = µ R z ) 2 = ( p R 2 z ) 2 R , µ R ) = � α s C F ⇣ R z − ip z z � e − ip z z ⌘ q (1) e i (1 − x ) p z CT ( z, p z , p z (4 p z ζ ) > 1 for Euclidean momentum, ˜ dx h ( x, r R ) , 2 π ( p R ( p R z ) 2 −∞ analytical continuuation from ρ < 1! Identify the collinear divergence: onshell limit! (1) ( z , p z , p R z , − p 2 << p z z , µ R ) q (1) ( z , p z ,0, − p 2 << p z ! 2 , µ R ) = ! 2 ) + ! (1) ( z , p z , p R q OM q CT 1 + x 2 8 x 1 � x ln x � 1 + 1 x > 1 > > > > > > Z ∞ z ) = α s C F > 1 + x 2 1 � x ln 4 2 x ⇣ e − ixp z z � e − ip z z ⌘ < q (1) ( z, p z , 0 , � p 2 ⌧ p 2 (4 p z ζ ) ˜ dx h 0 ( x, ρ ) , h 0 ( x, ρ ) ⌘ , 0 < x < 1 ρ � 2 π 1 � x −∞ > > > Z 1 + x 2 > 1 � x ln x � 1 ⇣ ⌘ > > � 1 x < 0 > : x Lattice 2018, East Lansing 7/23/18

  11. RI/MOM renormalization Fourier transform to obtain the x -dependent quasi-PDF: Z dz 2 π e ixzp z ˜ q (1) q (1) η ≡ p z OM ( x, p z , p z OM ( z, p z , p z ˜ R , µ R ) = R , µ R ) z p R ⇢Z = α s C F ⇥ ⇤⇥ ⇤ (4 ζ ) dy δ ( y � x ) � δ (1 � x ) h 0 ( y, ρ ) � h ( y, r R ) 2 π �� � A plus function + h ( x, r R ) � | η | h 1 + η ( x � 1) , r R , One can explicitly check that the RI/MOM quasi-PDF satisfies v.c.c.: ⎡ ⎤ z , − p 2 , µ R ) = α S C F ∞ ∞ ∞ (1) ( x , p z , p R ! dx q OM 2 π (4 ζ ) dx h ( x , r R ) dx | η | h (1 + | η |( x − 1), r R ) ⎥ = 0 ∫ ∫ ∫ − ⎢ ⎣ ⎦ −∞ −∞ −∞ Lattice 2018, East Lansing 7/23/18

  12. RI/MOM renormalization Full result of RI/MOM quasi-PDF: Plus functions with δ -function at x =1 q (1) OM ( x, p z , p z ˜ R , µ R ) (37) √ r R − 1  1 + x 2  1 + x 2 x 2 r R � r R � 8 1 − x ln arctan 2 x − 1 + x > 1 x − 1 − √ r R − 1 1 − x − > > 2(1 − x ) 4 x ( x − 1) + r R > > � > >  1 + x 2 1 − x ln 4( p z ) 2  1 + x 2 = α s C F > 2 r R � � √ < arctan r R − 1 0 < x < 1 (4 ζ ) √ r R − 1 − 1 − x − − p 2 2 π 2(1 − x ) + > > √ r R − 1 >  1 + x 2  1 + x 2 � � 1 − x ln x − 1 2 r R r R > > + arctan x < 0 > √ r R − 1 1 − x − 2 x − 1 − > : x 2(1 − x ) 4 x ( x − 1) + r R + α s C F ⇢ �� � (4 ζ ) h ( x, r R ) − | η | h 1 + η ( x − 1) , r R . 2 π Unregulated divergence in the δ ( 1-x ) part? No! z , − p 2 , µ R ) ~ 1 (1) ( x , p z , p R | x | →∞ ! lim q OM x 2 , integrable at infinity, no need to regularize! MSbar PDF: 8 0 x > 1 >  1 + x 2 1 − x ln µ 2 − p 2 − 1 + x 2 > � q (1) ( x, µ ) = α s C F < ⇥ ⇤ 1 − x ln x (1 − x ) − (2 − x ) 0 < x < 1 (4 ζ ) . 2 π + > > 0 x < 0 : Lattice 2018, East Lansing 7/23/18

  13. Matching coefficient Matching coefficient for isovector quasi-PDF in quark : ξ = x p z , p z ✓ ξ , µ R , µ ◆ C OM − δ (1 − ξ ) (40) y p z p z R R √ r R − 1  1 + ξ 2 ξ − 1 − 2(1 + ξ 2 ) − r R r R � 8 ξ 1 − ξ ln (1 − ξ ) √ r R − 1 arctan + ξ > 1 > > 2 ξ − 1 4 ξ ( ξ − 1) + r R > > � > > > + (2 − ξ ) − 2 arctan √ r R − 1 >  1 + ξ 2 1 − ξ ln 4( p z ) 2 + 1 + ξ 2 ⇢ 1 + ξ 2 > r R �� = α s C F < ⇥ ⇤ 1 − ξ ln ξ (1 − ξ ) 0 < ξ < 1 √ r R − 1 1 − ξ − µ 2 2(1 − ξ ) 2 π + > > > √ r R − 1 > >  1 + ξ 2  1 + ξ 2 1 − ξ ln ξ − 1 2 r R � r R � > > + arctan ξ < 0 > √ r R − 1 1 − ξ − − > 2(1 − ξ ) 2 ξ − 1 4 ξ ( ξ − 1) + r R : ξ + α s C F ⇢ �� � h ( ξ , r R ) − | η | h 1 + η ( ξ − 1) , r R , 2 π Matching coefficient for isovector nucleon quasi-PDF p z → yP z , η = yP z / p R z RI/MOM matching also preserves particle number conservation of the nucleon PDF! Lattice 2018, East Lansing 7/23/18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend