quantum formalism for systems with temporally varying
play

Quantum formalism for systems with temporally varying discretization - PowerPoint PPT Presentation

Quantum formalism for systems with temporally varying discretization Philipp H ohn Perimeter Institute FFP14 @ Marseille July 18th, 2014 based on PH arXiv:1401.6062, 1401.7731 and to appear and B. Dittrich, PH, T. Jacobson wip (classical


  1. Quantum formalism for systems with temporally varying discretization Philipp H¨ ohn Perimeter Institute FFP14 @ Marseille July 18th, 2014 based on PH arXiv:1401.6062, 1401.7731 and to appear and B. Dittrich, PH, T. Jacobson wip (classical formalism B. Dittrich, PH arXiv:1303.4294, 1108.1974) P. H¨ ohn (Perimeter) Discretization changing dynamics 1 / 15

  2. Discretization changing dynamics Discrete gravity models and lattice field theory (subject to coarse graining/refining dynamics) generically feature temporally varying discretization interpret as dynamical coarse graining/refining operations φ 3 4 see also Dittrich, Steinhaus ’13 φ 2 φ 1 φ 4 4 4 4 leads to varying number of φ 6 φ 2 φ 4 φ 5 φ 1 φ 3 3 degrees of freedom in ‘time’ 3 3 3 3 3 ‘time’ How to treat evolving lattice? φ 3 φ 2 2 φ 4 2 φ 1 need ‘evolving’ phase and 1 2 2 Hilbert spaces unitarity? 2 φ 1 φ 2 φ 3 1 1 1 observables? 3 constraints and symmetries? 4 Goal: understand this systematically! P. H¨ ohn (Perimeter) Discretization changing dynamics 2 / 15

  3. Plan of the talk Classical canonical dynamics 1 Quantum formalism 2 Vacuogenesis and QG dynamics 3 Summary and Outlook 4 P. H¨ ohn (Perimeter) Discretization changing dynamics 3 / 15

  4. Discretization changing dynamics: global moves no Hamiltonian: discrete evolution generated by time evolution moves global time evolution moves: correspond to space-time regions 1 boundary hypersurfaces as discrete time steps 2 evolve entire hypersurface at once 3 discrete time evolution corresponds to gluing regions along common boundaries ⇒ evolves future boundary time step 2 R 2 1 glue 1 R 1 0 P. H¨ ohn (Perimeter) Discretization changing dynamics 4 / 15

  5. Discretization changing dynamics: global moves no Hamiltonian: discrete evolution generated by time evolution moves global time evolution moves: correspond to space-time regions 1 boundary hypersurfaces as discrete time steps 2 evolve entire hypersurface at once 3 discrete time evolution corresponds to gluing regions along common boundaries ⇒ evolves future boundary time step 2 R 0 P. H¨ ohn (Perimeter) Discretization changing dynamics 4 / 15

  6. Discretization changing dynamics: global moves no Hamiltonian: discrete evolution generated by time evolution moves global time evolution moves: correspond to space-time regions 1 boundary hypersurfaces as discrete time steps 2 evolve entire hypersurface at once 3 discrete time evolution corresponds to gluing regions along common boundaries ⇒ evolves future boundary time step 2 R 0 P. H¨ ohn (Perimeter) Discretization changing dynamics 4 / 15

  7. Classical canonical dynamics [Marsden, West ’01; Gambini, Pullin ’03; Dittrich, PH ’11,’13] Associate to every region R k action S k ( x k − 1 , x k ) time step 2 R 2 1 1 R 1 0 P. H¨ ohn (Perimeter) Discretization changing dynamics 5 / 15

  8. Classical canonical dynamics [Marsden, West ’01; Gambini, Pullin ’03; Dittrich, PH ’11,’13] Associate to every region R k action S k ( x k − 1 , x k ) time step 2 S 2 R 2 1 1 R 1 S 1 0 P. H¨ ohn (Perimeter) Discretization changing dynamics 5 / 15

  9. Classical canonical dynamics [Marsden, West ’01; Gambini, Pullin ’03; Dittrich, PH ’11,’13] Associate to every region R k action S k ( x k − 1 , x k ) ⇒ use as generating function (# of x 0 ) � = (# of x 1 ) allowed − p 0 := − ∂ S 1 ( x 0 , x 1 ) + p 1 := ∂ S 1 ( x 0 , x 1 ) , ∂ x 0 ∂ x 1 − p : pre–momenta, + p : post–momenta time step 2 + p 2 S 2 R 2 1 − p 1 1 + p 1 R 1 S 1 − p 0 0 P. H¨ ohn (Perimeter) Discretization changing dynamics 5 / 15

  10. Classical canonical dynamics [Marsden, West ’01; Gambini, Pullin ’03; Dittrich, PH ’11,’13] Associate to every region R k action S k ( x k − 1 , x k ) ⇒ use as generating function (# of x 0 ) � = (# of x 1 ) allowed − p 0 := − ∂ S 1 ( x 0 , x 1 ) + p 1 := ∂ S 1 ( x 0 , x 1 ) , ∂ x 0 ∂ x 1 − p : pre–momenta, + p : post–momenta defines time evolution map time step 2 + p 2 ( x 0 , − p 0 ) �→ ( x 1 , + p 1 ) S 2 R 2 1 − p 1 1 + p 1 R 1 S 1 − p 0 0 P. H¨ ohn (Perimeter) Discretization changing dynamics 5 / 15

  11. Classical canonical dynamics [Marsden, West ’01; Gambini, Pullin ’03; Dittrich, PH ’11,’13] Associate to every region R k action S k ( x k − 1 , x k ) ⇒ use as generating function (# of x 0 ) � = (# of x 1 ) allowed − p 0 := − ∂ S 1 ( x 0 , x 1 ) + p 1 := ∂ S 1 ( x 0 , x 1 ) , ∂ x 0 ∂ x 1 − p : pre–momenta, + p : post–momenta defines time evolution map time step 2 + p 2 ( x 0 , − p 0 ) �→ ( x 1 , + p 1 ) S 2 R 2 1 − p 1 similarly, use S 2 ( x 1 , x 2 ) as gen. fct. 1 + p 1 R 1 S 1 − p 1 = − ∂ S 2 − p 0 0 ∂ x 1 ∂ x 1 = 0 ⇔ + p 1 = − p 1 momentum eom ∂ S 1 ∂ x 1 + ∂ S 2 matching P. H¨ ohn (Perimeter) Discretization changing dynamics 5 / 15

  12. Constraints in the discrete [Dittrich, PH ’11, ’13] evolution 0 → 1 defined by − p 0 := − ∂ S 1 ( x 0 , x 1 ) + p 1 := ∂ S 1 ( x 0 , x 1 ) , ∂ x 0 ∂ x 1 ∂ 2 S 1 ⇒ obtain two types of constraints if 1 has left and right null 0 ∂ x j ∂ x i vectors + C 1 ( x 1 , + p 1 ) = 0 ⇒ post–constraints − C 0 ( x 0 , − p 0 ) = 0 ⇒ pre–constraints time evol. no longer unique: e.g., − C 0 ( x 0 , − p 0 ) = 0 ⇒ x 1 = x 1 ( x 0 , − p 0 , λ m 1 ), λ 1 : a priori free parameter P. H¨ ohn (Perimeter) Discretization changing dynamics 6 / 15

  13. Constraint classification [Dittrich, PH ’13, PH to appear] non-trivialities arise when gluing 2 regions: impose both + C 1 , − C 1 generally, + C 1 � = − C 1 { − C 1 i , − C 1 j } ≈ 0 ≈ { + C 1 i , + C 1 { − C 1 i , + C 1 j } but j } � = 0 possibilities at step 1: x 2 , + p 2 C 1 = − C 1 = + C 1 ⇒ 1st class gauge + C 2 2 1 symmetry generator S 2 2nd class ⇒ fixes free parameters − C 1 2 1 x 1 , − p 1 − C 1 indep. of post–constraints but 1st class match 3 ⇒ non-trivial coarse graining condition for x 1 , + p 1 + C 1 1 data of move 0 → 1 S 1 + C 1 indep. of pre–constraints but 1st class ⇒ 4 − C 0 0 non-trivial coarse graining condition for data x 0 , − p 0 of move 1 → 2 P. H¨ ohn (Perimeter) Discretization changing dynamics 7 / 15

  14. Constraint classification [Dittrich, PH ’13, PH to appear] non-trivialities arise when gluing 2 regions: impose both + C 1 , − C 1 generally, + C 1 � = − C 1 { − C 1 i , − C 1 j } ≈ 0 ≈ { + C 1 i , + C 1 { − C 1 i , + C 1 j } but j } � = 0 possibilities at step 1: C 1 = − C 1 = + C 1 ⇒ 1st class gauge 1 symmetry generator x 2 , + p 2 2nd class ⇒ fixes free parameters 2 + ˜ 2 C 2 − C 1 indep. of post–constraints but 1st class 3 ˛ ˛ ˜ ⇒ non-trivial coarse graining condition for S 02 := S 1 + S 2 ˛ xsol 1 data of move 0 → 1 + C 1 indep. of pre–constraints but 1st class ⇒ 4 − ˜ C 0 0 non-trivial coarse graining condition for data x 0 , − p 0 of move 1 → 2 P. H¨ ohn (Perimeter) Discretization changing dynamics 7 / 15

  15. Coarse graining dynamics and pre–constraints little (coarse) info out + C 2 2 S 2 − C 1 1 ‘anti-drainer’ 1 ∄ + C 1 S 1 0 ∄ − C 0 lots of (fine) info in P. H¨ ohn (Perimeter) Discretization changing dynamics 8 / 15

  16. Coarse graining dynamics and pre–constraints little (coarse) info out + C 2 ‘anti-drainer’ 2 ˛ ˛ ˜ S 02 := S 1 + S 2 ˛ xsol 1 − ˜ 0 C 0 new lots of (fine) info in ⇒ constraints ‘propagate’ and become move/region dependent ⇒ propagation of information becomes move/region dependent! P. H¨ ohn (Perimeter) Discretization changing dynamics 8 / 15

  17. Quantization: general construction [PH ’14] restrict to configuration spaces Q ≃ R N k a la Dirac: ˆ C | ψ phys � = 0 impose constraints in quantum theory ´ quantum pre–/post–constraints: self-adjoint w.r.t. H kin = L 2 ( R N k , dx k ) 1 k have absolutely cont. spectrum 2 orbits non-compact 3 ⇒ proceed by group averaging [Marolf ’95, ’00] : = � I δ ( + ˆ post–physical states: + ψ phys := + P 1 ψ kin C 1 I ) ψ kin 1 1 1 = � I δ ( − ˆ − ψ phys := − P 0 ψ kin C 0 I ) ψ kin pre–physical states: 0 0 0 � C ) := 1 ds e is ˆ δ (ˆ C 2 π physical inner product on pre–/post–physical Hilbert spaces ± H phys � � k � � � ± ψ phys � ± ξ phys � phys = � ψ kin � ± P k ξ kin k � kin k k k P. H¨ ohn (Perimeter) Discretization changing dynamics 9 / 15

  18. Quantum dynamics [PH ’14] H kin H kin 0 1 + P 1 − P 0 ∨ ∨ − H phys + H phys 0 1 P. H¨ ohn (Perimeter) Discretization changing dynamics 10 / 15

  19. Quantum dynamics [PH ’14] H kin H kin 0 1 P 0 → 1 + P 1 − P 0 ∨ ∨ > − H phys + H phys 0 1 P. H¨ ohn (Perimeter) Discretization changing dynamics 10 / 15

  20. Quantum dynamics [PH ’14] H kin H kin 0 1 P 0 → 1 P 1 → 0 + P 1 − P 0 ∨ ∨ < > − H phys + H phys 0 1 P. H¨ ohn (Perimeter) Discretization changing dynamics 10 / 15

  21. Quantum dynamics [PH ’14] H kin H kin 0 1 P 0 → 1 P 1 → 0 + P 1 − P 0 ∨ < > ∨ − H phys + H phys > 0 1 U 0 → 1 P. H¨ ohn (Perimeter) Discretization changing dynamics 10 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend