quantum correlations and tsirelson s problem
play

Quantum Correlations and Tsirelsons Problem NaruTaka OZAWA { - PowerPoint PPT Presentation

Quantum Correlations and Tsirelsons Problem NaruTaka OZAWA { Research Institute for Mathematical Sciences, Kyoto University C -Algebras and Noncommutative Dynamics March 2013 About the Connes Embedding


  1. Quantum Correlations and Tsirelson’s Problem NaruTaka OZAWA � � ¤ { Ø � Research Institute for Mathematical Sciences, Kyoto University C ∗ -Algebras and Noncommutative Dynamics March 2013 About the Connes Embedding Conjecture—algebraic approaches—. Jpn. J. Math., 8 (2013). Tsirelson’s problem and asymptotically commuting unitary matrices. J. Math. Phys., 54 (2013). Taka OZAWA (RIMS) QC & TP Sde Boker, 13/03/14 1 / 17

  2. Overview of today’s talk Operator Algebras Kirchberg’s Conjecture Connes Embedding Conjecture & Quantum Positivstellens¨ atze Measurement Theory Tsirelson’s Tsirelson’s Problem (1993, 2006) Problem Q c = Q s ? Quantum Noncommutative Kirchberg’s Conjecture (1993) Information Real Algebraic C ∗ F d ⊗ max C ∗ F d Semidefinite Theory Programming Geometry = C ∗ F d ⊗ min C ∗ F d ? Connes Embedding Conjecture (1976) ∀ M M ֒ → R ω ? Taka OZAWA (RIMS) QC & TP Sde Boker, 13/03/14 2 / 17

  3. Quantum information theory Quantum information theory Taka OZAWA (RIMS) QC & TP Sde Boker, 13/03/14 3 / 17

  4. Quantum measurement (von Neumann measurement) In probability theory, a trial with m outcomes is described by a probability space ( X , µ ) and a partition X = � m i =1 X i . When one obtains i as an outcome, the ambient probability space changes to ( X i , µ ( X i ) − 1 µ | X i ). � P i = 1 X i are orthogonal projections on L 2 ( X , µ ) with � m i =1 P i = 1. In quantum theory, a PVM (Projection Valued Measure) with m outcomes is an m -tuple ( P i ) m i =1 of orth projections on a Hilbert space H such that � m i =1 P i = 1, and the outcome of a m’ment of a (pure) state ψ ∈ H , a unit vector, is probabilistic: ( � ψ, P i ψ � ) m i =1 ∈ Prob([1 , . . . , m ]). When one obtains i as an outcome, the state ψ collapses to � P i ψ � − 1 P i ψ . Suppose Alice and Bob have d -PVMs respectively and a shared state: ( P k i ) m i =1 , k = 1 , . . . , d and ( Q l j ) m j =1 , l = 1 , . . . , d , and ψ . Each of them conducts a m’ment of ψ by using one of PVMs they have. What are the possibilities? Taka OZAWA (RIMS) QC & TP Sde Boker, 13/03/14 4 / 17

  5. ✿ ✿③ ✿③ ✿③ ✿③ EPR Paradox and Bell Test (CHSH Bell inequality) Suppose Alice and Bob have d -PVMs respectively and a shared state: ( P k i ) m i =1 , k = 1 , . . . , d and ( Q l j ) m j =1 , l = 1 , . . . , d , and ψ . Each of them conducts a m’ment of ψ by using one of PVMs they have. ( � ψ, P k i ψ � ) m ( � ψ, Q l j ψ � ) m i =1 ❞ ❞✩ ❞✩ ❞✩ ❞✩ j =1 ψ ψ ψ Taka OZAWA (RIMS) QC & TP Sde Boker, 13/03/14 5 / 17

  6. ✿③ ✿③ ✿③ ✿③ ✿ EPR Paradox and Bell Test (CHSH Bell inequality) Suppose Alice and Bob have d -PVMs respectively and a shared state: ( P k i ) m i =1 , k = 1 , . . . , d and ( Q l j ) m j =1 , l = 1 , . . . , d , and ψ . Each of them conducts a m’ment of ψ by using one of PVMs they have. In the classical setting, | E αβ ( AB ) + E αβ ′ ( AB ′ ) + E α ′ β ( A ′ B ) − E α ′ β ′ ( A ′ B ′ ) | ≤ 2, because | AB + AB ′ + A ′ B − A ′ B ′ | α = { Apple, Grape } β = { Hard, Soft } ≤ | B + B ′ | + | B − B ′ | ≤ 2. ❞ ❞✩ ❞✩ ❞✩ ❞✩ A = P A − P G B = Q H − Q S α ′ = { Red, Green } β ′ = { Big, Small } A ′ = P R − P G B ′ = Q B − Q S Does Nature conform this inequality? Taka OZAWA (RIMS) QC & TP Sde Boker, 13/03/14 5 / 17

  7. Tsirelson’s Problem on quantum correlations We consider the convex sets C ⊂ Q s ⊂ Q c ⊂ Θ ⊂ M md ( R ≥ 0 ) of the classical and quantum correlation matrices for two separated systems: ( X , µ ) a (finite) prob space �� � P k i Q l ( P k i ) m C = { j d µ : i =1 , k = 1 , . . . , d , partitions of 1 X , } , k , l ( Q l j ) m j =1 , l = 1 , . . . , d , partitions of 1 X i , j ψ ∈ H ⊗ K a state � � � ψ, ( P k i ⊗ Q l ( P k i ) m i =1 , k = 1 , . . . , d , PVMs on H , Q s = cl { j ) ψ � : } , k , l ( Q l j ) m j =1 , l = 1 , . . . , d , PVMs on K i , j H a Hilbert space, ψ ∈ H a state ( P k i ) m i =1 , k = 1 , . . . , d , PVMs on H , � � � ψ, P k i Q l Q c = { j ψ � : } , ( Q l j ) m k , l j =1 , l = 1 , . . . , d , PVMs on H , i , j [ P k i , Q l j ] = 0 for all i , j and k , l γ k , l i , j γ k , l i , j ≥ 0, � i , j = 1 � � γ k , l Θ = { : i , j indep of l } . i γ k , l j γ k , l i , j k , l � i , j indep of k , � i , j Taka OZAWA (RIMS) QC & TP Sde Boker, 13/03/14 6 / 17

  8. Tsirelson’s Problem on quantum correlations We consider the convex sets C ⊂ Q s ⊂ Q c ⊂ Θ ⊂ M md ( R ≥ 0 ) of the classical and quantum correlation matrices for two separated systems: ( X , µ ) a (finite) prob space �� � P k i Q l ( P k i ) m C = { j d µ : i =1 , k = 1 , . . . , d , partitions of 1 X , } , k , l ( Q l j ) m j =1 , l = 1 , . . . , d , partitions of 1 X i , j ψ ∈ H ⊗ K a state � � � ψ, ( P k i ⊗ Q l ( P k i ) m i =1 , k = 1 , . . . , d , PVMs on H , Q s = cl { j ) ψ � : } , k , l ( Q l j ) m j =1 , l = 1 , . . . , d , PVMs on K i , j H a Hilbert space, ψ ∈ H a state ( P k i ) m i =1 , k = 1 , . . . , d , PVMs on H , � � � ψ, P k i Q l C � = Q s by CHSH Bell inequality (1969) Q c = { j ψ � : } , ( Q l j ) m k , l j =1 , l = 1 , . . . , d , PVMs on H , | A 1 B 1 + A 1 B 2 + A 2 B 1 − A 2 B 2 | ≤ 2 i , j [ P k i , Q l j ] = 0 for all i , j and k , l for commuting variables − 1 ≤ A i , B j ≤ 1. γ k , l i , j γ k , l i , j ≥ 0, � i , j = 1 � � γ k , l Θ = { : i , j indep of l } . i γ k , l j γ k , l i , j k , l � i , j indep of k , � i , j Taka OZAWA (RIMS) QC & TP Sde Boker, 13/03/14 6 / 17

  9. Tsirelson’s Problem on quantum correlations We consider the convex sets C ⊂ Q s ⊂ Q c ⊂ Θ ⊂ M md ( R ≥ 0 ) of the classical and quantum correlation matrices for two separated systems: ( X , µ ) a (finite) prob space �� � P k i Q l ( P k i ) m C = { j d µ : i =1 , k = 1 , . . . , d , partitions of 1 X , } , Q c � = Θ by Cirel’son’s Quantum Bell inequality (1980) k , l √ ( Q l j ) m j =1 , l = 1 , . . . , d , partitions of 1 X i , j | A 1 B 1 + A 1 B 2 + A 2 B 1 − A 2 B 2 | ≤ 2 2 ψ ∈ H ⊗ K a state for operators − 1 ≤ A i , B j ≤ 1 with [ A i , B j ] = 0. � � � ψ, ( P k i ⊗ Q l ( P k i ) m i =1 , k = 1 , . . . , d , PVMs on H , Q s = cl { j ) ψ � : } , k , l ( Q l j ) m j =1 , l = 1 , . . . , d , PVMs on K i , j H a Hilbert space, ψ ∈ H a state ( P k i ) m i =1 , k = 1 , . . . , d , PVMs on H , � � � ψ, P k i Q l Q c = { j ψ � : } , ( Q l j ) m k , l j =1 , l = 1 , . . . , d , PVMs on H , i , j [ P k i , Q l j ] = 0 for all i , j and k , l γ k , l i , j γ k , l i , j ≥ 0, � i , j = 1 � � γ k , l Θ = { : i , j indep of l } . i γ k , l j γ k , l i , j k , l � i , j indep of k , � i , j Taka OZAWA (RIMS) QC & TP Sde Boker, 13/03/14 6 / 17

  10. Tsirelson’s Problem on quantum correlations We consider the convex sets C ⊂ Q s ⊂ Q c ⊂ Θ ⊂ M md ( R ≥ 0 ) of the classical and quantum correlation matrices for two separated systems: Note that Q c becomes same as Q s if we restrict the Hilbert ( X , µ ) a (finite) prob space �� � spaces H appearing in the definition of Q c to fin-dim ones. P k i Q l ( P k i ) m C = { j d µ : i =1 , k = 1 , . . . , d , partitions of 1 X , } , k , l ( Q l j ) m j =1 , l = 1 , . . . , d , partitions of 1 X i , j ψ ∈ H ⊗ K a state � � � ψ, ( P k i ⊗ Q l ( P k i ) m i =1 , k = 1 , . . . , d , PVMs on H , Q s = cl { j ) ψ � : } , k , l ( Q l j ) m j =1 , l = 1 , . . . , d , PVMs on K i , j H a Hilbert space, ψ ∈ H a state ( P k i ) m i =1 , k = 1 , . . . , d , PVMs on H , � � � ψ, P k i Q l Q c = { j ψ � : } , ( Q l j ) m k , l j =1 , l = 1 , . . . , d , PVMs on H , i , j [ P k i , Q l j ] = 0 for all i , j and k , l γ k , l i , j γ k , l i , j ≥ 0, � i , j = 1 � � γ k , l Tsirelson’s Problem: Q c = Q s ? Θ = { : i , j indep of l } . i γ k , l j γ k , l i , j k , l � i , j indep of k , � i , j Taka OZAWA (RIMS) QC & TP Sde Boker, 13/03/14 6 / 17

  11. Quantum correlation and C ∗ -algebras Quantum correlation matrices are related to the C ∗ -algebra ℓ m ∞ ∗ · · · ∗ ℓ m ( d -fold unital full free product) , ∞ which is isomorphic to the full group C ∗ -algebra C ∗ (Γ) of Γ = Z ∗ d m . Denote by e k i the standard basis of projections in the k -th copy of ℓ m ∞ . j in C ∗ (Γ) ⊗ C ∗ (Γ). Then, one has Also e k i := e k i ⊗ 1 and f l j := 1 ⊗ e l � � φ ( e k i f l : φ a state on C ∗ (Γ) ⊗ max C ∗ (Γ) } Q c = { j ) k , l i , j and � � φ ( e k i f l : φ a state on C ∗ (Γ) ⊗ min C ∗ (Γ) } . Q s = { j ) k , l i , j Theorem (Kirchberg 1993, Fritz and Junge et al. 2010, Oz. 2012) The following conjectures are equivalent. Tsirelson’s problem has an affirmative answer: Q c = Q s for all m , d . Kirchberg’s Conjecture: C ∗ (Γ) ⊗ max C ∗ (Γ) = C ∗ (Γ) ⊗ min C ∗ (Γ) holds. → R ω for for every II 1 factor M . Connes’s Embedding Conjecture: M ֒ Taka OZAWA (RIMS) QC & TP Sde Boker, 13/03/14 7 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend