tensors from entanglement to computational complexity
play

Tensors: From Entanglement to Computational Complexity Matthias - PowerPoint PPT Presentation

Tensors: From Entanglement to Computational Complexity Matthias Christandl (Copenhagen & MIT) Peter Vrana (Budapest) and Jeroen Zuiddam (Amsterdam->IAS) arXiv:1709.0781, Proc. STOC18 Outline Two motivations Resource theory of


  1. Tensors: From Entanglement to Computational Complexity Matthias Christandl (Copenhagen & MIT) Peter Vrana (Budapest) and Jeroen Zuiddam (Amsterdam->IAS) arXiv:1709.0781, Proc. STOC’18

  2. Outline • Two motivations • Resource theory of tensors • Entanglement polytopes • Tensor tensor …. tensor ⊗ ⊗ ⊗ • Quantum functionals

  3. Two motivations

  4. Quantum states 1 1 1 State of a classical 0 0 0 system 1 1 1 or (3 bits) 0 0 0 State of a 1 1 1 quantum 0 0 0 system (3 qubits) 1 1 1 + ✓ 1 ◆ 0 0 0 e 0 = 0 ✓ 0 t = e 0 ⊗ e 0 ⊗ e 0 + e 1 ⊗ e 1 ⊗ e 1 ◆ e 1 = 1

  5. Quantum state=tensor t ∈ C d ⊗ C d ⊗ C d d X t = t ijk e i ⊗ e j ⊗ e k i,j,k =1

  6. GHZ state = unit tensor Greenberger-Horne-Zeilinger r r X h r i = e i ⌦ e i ⌦ e i i =1 1 1

  7. Local operations 1 1 1 Local trans- 0 0 0 formation: Flip first bit 1 1 1 Local 0 0 0 trans- formation: 1 1 1 + Flip first 0 0 0 qubit ✓ ◆ 0 1 1 0 t = e 1 ⊗ e 0 ⊗ e 0 + e 0 ⊗ e 1 ⊗ e 1 t = e 0 ⊗ e 0 ⊗ e 0 + e 1 ⊗ e 1 ⊗ e 1

  8. Local operations=restrictions t ≥ t 0 if ( a ⊗ b ⊗ c ) t = t 0 for some matrices a, b, c Linear combination of slices

  9. 3 qubits Greenberger-Horne-Zeilinger GHZ-state e 0 ⊗ e 0 ⊗ e 0 + e 1 ⊗ e 1 ⊗ e 1 Einstein-Podolsky-Rosen (EPR)-state W-state e 0 ⊗ e 0 ⊗ e 1 + e 0 ⊗ e 1 ⊗ e 0 + e 1 ⊗ e 0 ⊗ e 0 ≈ e 0 ⊗ e 0 ⊗ e 0 + e 1 ⊗ e 1 ⊗ e 0 e 0 ⊗ e 0 ⊗ e 0 + e 0 ⊗ e 1 ⊗ e 1 e 0 ⊗ e 0 ⊗ e 0 + e 1 ⊗ e 0 ⊗ e 1 e 0 ⊗ e 0 ⊗ e 0 unentangled state

  10. Algebraic Complexity M ( d ) = algebra of d × d complex matrices Mamu ( d ) : M ( d ) × M ( d ) → M ( d ) bilinear ( A, B ) 7! A · B d x d 3 multiplications = d

  11. Bilinear maps=tensors Mamu ( d ) : M ( d ) × M ( d ) × M ( d ) ∗ → C ( A, B, C ) 7! trA · B · C d e ij = e i ⊗ e j X Mamu ( d ) = e ij ⊗ e jk ⊗ e ki i,j,k =1 d X = ( e i ⊗ e j ) ⊗ ( e j ⊗ e k ) ⊗ ( e k ⊗ e i ) i,j,k =1 d EPR states

  12. Complexity=Tensor rank Strassen: # elementary multiplications = tensor rank Do you like Strassen’s 2 7 decomposition? ≥ Then you might want to look at some tensor surgery next! Ch. & Zuiddam, e 00 ⊗ e 00 ⊗ e 00 + e 11 ⊗ e 11 ⊗ e 11 Comp. Compl. 2018 e 01 ⊗ e 10 ⊗ e 00 + e 10 ⊗ e 01 ⊗ e 11 e ± := e 0 ± e 1 arXiv:1606.04085 e 01 ⊗ e 11 ⊗ e 10 + e 10 ⊗ e 00 ⊗ e 01 e 00 ⊗ e 01 ⊗ e 10 + e 11 ⊗ e 10 ⊗ e 01 = e − 1 ⊗ e 1+ ⊗ e 00 + e 1+ ⊗ e 00 ⊗ e − 1 + e 00 ⊗ e − 1 ⊗ e 1+ − e − 0 ⊗ e 0+ ⊗ e 11 − e 0+ ⊗ e 11 ⊗ e − 0 − e 11 ⊗ e − 0 ⊗ e 0+ + ( e 00 + e 11 ) ⊗ ( e 00 + e 11 ) ⊗ ( e 00 + e 11 )

  13. Resource theory of tensors

  14. Resource theory of tensors free operations valuable resource t ≥ t 0 if ( a ⊗ b ⊗ c ) t = t 0 • Restriction for some matrices a, b, c r • Unit X h r i = e i ⌦ e i ⌦ e i i =1 • Rank R ( t ) = min { r : h r i � t } r X = min { r : t = α i ⊗ β i ⊗ γ i } i =1 • Subrank Q ( t ) = max { r : t � h r i}

  15. Restriction t ≥ t 0 if ( a ⊗ b ⊗ c ) t = t 0 for some matrices a, b, c = t 0 if t ≥ t 0 and t 0 ≥ t t ∼ i ff ( a ⊗ b ⊗ c ) t = t 0 for invertible a, b, c G = GL ( d ) × GL ( d ) × GL ( d ) i ff G.t = G.t 0 Classifying orbits Deciding restriction and their relations

  16. GHZ state Degeneration W state ( e 0 + ✏ e 1 ) ⊗ 3 − e ⊗ 3 0 = ✏ ( e 0 ⊗ e 0 ⊗ e 1 + e 0 ⊗ e 1 ⊗ e 0 + e 1 ⊗ e 0 ⊗ e 0 ) + O ( ✏ 2 ) t D t 0 if t ✏ → t 0 , t ≥ t ✏ ✏ 7! 0 Classifying orbit closures and Deciding degeneration their relations

  17. Deciding degeneration • Orbit closures are G-invariant algebraic varieties t 6 D t 0 i ff there exists G � covariant polynomial f : f ( t ) 6 = f ( t 0 ) f ( t ) = 0 , but f ( t 0 ) 6 = 0 • Example: e 0 ⊗ e 0 ⊗ e 0 + e 1 ⊗ e 1 ⊗ e 1 f=Cayley hyperdeterminant e 0 ⊗ e 0 ⊗ e 1 + e 0 ⊗ e 1 ⊗ e 0 + e 1 ⊗ e 0 ⊗ e 0 ≈

  18. be happy with partial information Entanglement polytopes

  19. Local spectra A ∈ C d ⊗ C d ⊗ C d � � t 0 A ) 2 λ A = singular values ( t 0 B ) 2 λ B = singular values ( t 0 normalised t 0 ∈ C d ⊗ C d ⊗ C d ordered probability distribution B ∈ · · · =spectrum of reduced density operator t 0 C d ⊗ C d � ⊗ C d � t 0 C ∈ C ) 2 λ C = singular values ( t 0

  20. Entanglement polytopes Reduced density matrices EPR GHZ product =all W marginal polytope 14 Ch-Mitchison, Klyachko, Walter-Doran-Gross-Ch, Daftuar-Hayden (2004) Sawicki-Oszmaniec-Kus (2010) based on Brion based in part on Kirwan

  21. Experimental Detection 1 ρ λ (1) λ (2) max max ψ 1 λ (2) λ (3) max max λ (3) 0 . 5 λ (1) C max max 1 Science THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE • if measured value XX XXXX 2013 I www.nature.com/nature I E10 Headline headline Subline sublkdjfksdfdf – not in W-polytope lkdsjfdkjfdf – Then must be in GHZ-class! • easy test for entanglement!

  22. A little more partial information? • Orbit closures are G-invariant algebraic varieties t 6 D t 0 i ff there exists G � covariant polynomial f : f ( t ) 6 = f ( t 0 ) f ( t ) = 0 , but f ( t 0 ) 6 = 0 • f’s come in types indexed by 3 Young diagrams . λ A = # boxes=degree

  23. Weyl’s construction S n acts GL ( d ) acts • Schur-Weyl duality ( C d ) ⊗ n ∼ M [ λ ] ⊗ V λ = λ orthogonal projector onto component • P λ A λ A t ⊗ n ( P λ A ⊗ P λ B ⊗ P λ C ) | {z } =: P λ X ! t ⊗ n = X v i v ∗ v ∗ = i f i ( t ) i i i

  24. Relaxation • Orbit closures are G-invariant algebraic varieties t 6 D t 0 i ff there exists G � covariant polynomial f : f ( t ) 6 = f ( t 0 ) f ( t ) = 0 , but f ( t 0 ) 6 = 0 if there is λ s.th. P λ t ⌦ n = 0 but P λ t 0⌦ n 6 = 0 occurrence obstructions (Geometric Complexity Theory) Mulmuley-Sohoni, Strassen, Bürgisser-Ikenmeyer, …

  25. Entanglement polytopes Invariant-theoretic ✓ 4 ◆ 8 , 3 8 , 1 . 8 EPR GHZ product =all W g λ 6 = 0 Kronecker P λ t ⊗ n 6 = 0 = marginal polytope 14

  26. tensor tensor ... tensor ⊗ ⊗ ⊗

  27. (Quantum) information theory Source Encoder Storage Decoder Shannon: storage cost= all bits Source Source Encoder Decoder Storage . . . . . . Source Shannon: storage cost= H(X) bits/symbol

  28. A small observation d = 2 n e i = e i 1 i 2 ··· i n = e i 1 ⊗ e i 2 ⊗ · · · ⊗ e i n d 2 ! 2 ! 2 ! X X X X e i ⊗ e i = e i 1 ⊗ e i 1 ⊗ e i 2 ⊗ e i 2 ⊗ · · · ⊗ e i n ⊗ e i n i 1 =1 i 2 =1 i n =1 i =1 = ( e 0 ⊗ e 0 + e 1 ⊗ e 1 ) ⊗ n d e i ⊗ e i ⊗ e i = ( e 0 ⊗ e 0 ⊗ e 0 + e 1 ⊗ e 1 ⊗ e 1 ) ⊗ n X h d i = = h 2 i ⊗ n i =1 ⊗ n 0 1 d 2 X X = Mamu (2) ⊗ n Mamu ( d ) = e ij ⊗ e jk ⊗ e ki = e ij ⊗ e jk ⊗ e ki @ A i,j,k =1 i,j,k =1

  29. Algebraic complexity theory d x = d d 3 multiplications • Exponent of matrix multiplication O ( d ω ) 2 ≤ 2 . 38 ≤ · · · ≤ 2 . 8 ≤ 3 …, Coppersmith-Winograd Strassen ω = inf { r : h 2 i ⊗ ( nr + o ( n )) � Mamu (2) ⊗ n } h 2 i ⊗ 2 n + o ( n ) � Mamu (2) ⊗ n • Conjecture:

  30. Asymptotic resource theory t & t 0 if t ⌦ n + o ( n ) ≥ t 0⌦ n • Asymp. restriction r • Unit X h r i = e i ⌦ e i ⌦ e i i =1 ˜ 1 n →∞ R ( t ⊗ n ) • Asymp. rank R ( t ) := lim n ˜ 1 • Asymp. subrank n →∞ Q ( t ⊗ n ) Q ( t ) := lim n ˜ R ( Mamu (2)) = 2 ω

  31. Asymptotic analogue of completeness of invariants for degeneration Strassen’s spectral theorem t & t 0 i ff F ( t ) ≥ F ( t 0 ) for all F : under restriction F monotone F ( s ) ≥ F ( s 0 ) for all s ≥ s 0 F normalised F ( h r i ) = r F multiplicative F ( s ⊗ s 0 ) = F ( s ) · F ( s 0 ) F additive F ( s ⊕ s 0 ) = F ( s ) + F ( s 0 ) ˜ R ( t ) = max F ( t ) easy ⇒ F difficult ⇐ ˜ Q ( t ) = min F ( t ) every F is an obstruction F

  32. What are the F’s? • Existence non-constructive – Compact space worth of them – 3 Gauge points: ranks of slicings – Construction of others open since ’80s • Theorem also true for subclasses of tensors – Oblique tensor – Strassen’s support functionals

  33. Main Result: Quantum functionals θ = ( θ A , θ B , θ C ) probability distribution e.g. θ A = θ B = θ C = 1 3 operator scaling E θ ( t ) := max λ ∈ ∆ ( t ) { θ A H ( λ A ) + θ B H ( λ B ) + θ C H ( λ C ) } entanglement polytope F θ ( t ) := 2 E θ ( t ) quantum functionals Measures distance to origin (relative entropy distance) 14 ✓ 1 ◆ 2 E ( 1 1 0 h ≈ 0 . 92 3 , 1 3 , 1 3 ) 3 3

  34. Main Result: Quantum functionals E θ ( t ) := max λ ∈ ∆ ( t ) { θ A H ( λ A ) + θ B H ( λ B ) + θ C H ( λ C ) } F θ ( t ) := 2 E θ ( t ) easy, since polytope gets smaller under restriction quantum functional gets smaller F θ monotone easy, since polytope of unit tensor contains uniform point F ( h r i ) = r F θ normalised F θ multiplicative similar to multiplicativity, see paper F θ additive

  35. Multiplicativity F θ ( t ⊗ t 0 ) = F θ ( t ) · F θ ( t 0 ) F θ ( t ) := 2 E θ ( t ) E θ ( t ⊗ t 0 ) = E θ ( t ) + E θ ( t 0 ) ≥ ≤ Entanglement polytope: Entanglement polytopes: Reduced density matrices Invariant-theoretic

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend