quantum algorithms for the hidden shift problem of
play

Quantum algorithms for the hidden shift problem of Boolean functions - PowerPoint PPT Presentation

Quantum algorithms for the hidden shift problem of Boolean functions Maris Ozols University of Waterloo, IQC and NEC Labs Joint work with: Martin R otteler (NEC Labs) (NEC Labs) J er emie Roland Andrew Childs (University of


  1. Quantum algorithms for the hidden shift problem of Boolean functions Maris Ozols University of Waterloo, IQC and NEC Labs Joint work with: Martin R¨ otteler (NEC Labs) (NEC Labs) J´ er´ emie Roland Andrew Childs (University of Waterloo, IQC) arXiv:1103.2774 Quantum rejection sampling arXiv:1103.3017 Quantum algorithm for the Boolean hidden shift problem 19/09/2011 Dagstuhl 1

  2. Motivation Hidden shift and subgroup problems Legendre symbol Factoring ❦ ◗ ✑ ✸ ◗ ✑✑✑ [van Dam et al. , 2003] ◗ [Shor, 1994] ◗ Discrete ✿ ✘ ✘✘ Hidden Hidden logarithm [Shor, 1994] shift subgroup ❳❳ ❳ ③ problem problem Pell’s equation Dihedral ❩❩ [Hallgren, 2002] group ? � Symmetric ⑦ ❩ ? � group Lattice � � ✠ ? ? problems ❄ ❄ New algorithms [Regev, 2002] Attacks on Graph cryptosystems isomorphism 19/09/2011 Dagstuhl 2

  3. Boolean hidden shift problem (BHSP) Problem ◮ Given: Complete knowledge of f : Z n 2 → Z 2 and access to a black-box oracle for f s ( x ) := f ( x + s ) x ⇒ ⇒ f s ( x ) ◮ Determine: The hidden shift s 19/09/2011 Dagstuhl 3

  4. Boolean hidden shift problem (BHSP) Problem ◮ Given: Complete knowledge of f : Z n 2 → Z 2 and access to a black-box oracle for f s ( x ) := f ( x + s ) x ⇒ ⇒ f s ( x ) ◮ Determine: The hidden shift s Delta functions are hard ◮ f ( x ) := δ x,x 0 f ( x ) 1 0 0 n x 0 1 n 19/09/2011 Dagstuhl 3

  5. Boolean hidden shift problem (BHSP) Problem ◮ Given: Complete knowledge of f : Z n 2 → Z 2 and access to a black-box oracle for f s ( x ) := f ( x + s ) x ⇒ ⇒ f s ( x ) ◮ Determine: The hidden shift s Delta functions are hard ◮ f ( x ) := δ x,x 0 f s ( x ) 1 s 0 0 n x 0 1 n x 0 + s 19/09/2011 Dagstuhl 3

  6. Boolean hidden shift problem (BHSP) Problem ◮ Given: Complete knowledge of f : Z n 2 → Z 2 and access to a black-box oracle for f s ( x ) := f ( x + s ) x ⇒ ⇒ f s ( x ) ◮ Determine: The hidden shift s Delta functions are hard ◮ f ( x ) := δ x,x 0 √ ◮ Equivalent to Grover’s search: Θ( 2 n ) f s ( x ) 1 s 0 0 n x 0 1 n x 0 + s 19/09/2011 Dagstuhl 3

  7. Fourier transform of Boolean functions The ± 1 -function (normalized) 1 2 n ( − 1) f ( x ) ◮ F ( x ) := √ 19/09/2011 Dagstuhl 4

  8. Fourier transform of Boolean functions The ± 1 -function (normalized) 1 2 n ( − 1) f ( x ) ◮ F ( x ) := √ Fourier transform � � 1 1 1 H := √ 1 − 1 2 ◮ ˆ F ( w ) := � w | H ⊗ n | F � 19/09/2011 Dagstuhl 4

  9. Fourier transform of Boolean functions The ± 1 -function (normalized) 1 2 n ( − 1) f ( x ) ◮ F ( x ) := √ Fourier transform � � 1 1 1 H := √ 1 − 1 2 ◮ ˆ F ( w ) := � w | H ⊗ n | F � = 1 2 ( − 1) w · x F ( x ) √ � x ∈ Z n 2 n 19/09/2011 Dagstuhl 4

  10. Fourier transform of Boolean functions The ± 1 -function (normalized) 1 2 n ( − 1) f ( x ) ◮ F ( x ) := √ Fourier transform � � 1 1 1 H := √ 1 − 1 2 ◮ ˆ F ( w ) := � w | H ⊗ n | F � = 1 2 ( − 1) w · x F ( x ) √ � x ∈ Z n 2 n Function f is bent if ∀ w : | ˆ 1 F ( w ) | = √ 2 n 19/09/2011 Dagstuhl 4

  11. Bent functions are easy Preparing the “phase state” ◮ Phase oracle O f s : | x � �→ ( − 1) f s ( x ) | x � 19/09/2011 Dagstuhl 5

  12. Bent functions are easy Preparing the “phase state” ◮ Phase oracle O f s : | x � �→ ( − 1) f s ( x ) | x � | 0 � ⊗ n O f s H ⊗ n H ⊗ n | Φ( s ) � 2 ( − 1) s · w ˆ ◮ | Φ( s ) � := � F ( w ) | w � w ∈ Z n 19/09/2011 Dagstuhl 5

  13. Bent functions are easy Preparing the “phase state” ◮ Phase oracle O f s : | x � �→ ( − 1) f s ( x ) | x � | 0 � ⊗ n O f s H ⊗ n H ⊗ n | Φ( s ) � 2 ( − 1) s · w ˆ ◮ | Φ( s ) � := � F ( w ) | w � w ∈ Z n Algorithm [R¨ otteler’10] ◮ Prepare | Φ( s ) � 19/09/2011 Dagstuhl 5

  14. Bent functions are easy Preparing the “phase state” ◮ Phase oracle O f s : | x � �→ ( − 1) f s ( x ) | x � | 0 � ⊗ n O f s H ⊗ n H ⊗ n | Φ( s ) � 2 ( − 1) s · w ˆ ◮ | Φ( s ) � := � F ( w ) | w � w ∈ Z n Algorithm [R¨ otteler’10] ◮ Prepare | Φ( s ) � 2 ( − 1) s · w | ˆ ◮ D | Φ( s ) � = � F ( w ) || w � w ∈ Z n � | ˆ � F ( w ) | where D := diag [Curtis & Meyer’04] ˆ F ( w ) 19/09/2011 Dagstuhl 5

  15. Bent functions are easy Preparing the “phase state” ◮ Phase oracle O f s : | x � �→ ( − 1) f s ( x ) | x � | 0 � ⊗ n O f s H ⊗ n H ⊗ n | Φ( s ) � 2 ( − 1) s · w ˆ ◮ | Φ( s ) � := � F ( w ) | w � w ∈ Z n Algorithm [R¨ otteler’10] ◮ Prepare | Φ( s ) � 2 ( − 1) s · w | ˆ ◮ D | Φ( s ) � = � F ( w ) || w � w ∈ Z n � | ˆ � F ( w ) | where D := diag [Curtis & Meyer’04] ˆ F ( w ) ◮ If f is bent then H ⊗ n D | Φ( s ) � = | s � 19/09/2011 Dagstuhl 5

  16. Bent functions are easy Preparing the “phase state” ◮ Phase oracle O f s : | x � �→ ( − 1) f s ( x ) | x � | 0 � ⊗ n O f s H ⊗ n H ⊗ n | Φ( s ) � 2 ( − 1) s · w ˆ ◮ | Φ( s ) � := � F ( w ) | w � w ∈ Z n Algorithm [R¨ otteler’10] ◮ Prepare | Φ( s ) � 2 ( − 1) s · w | ˆ ◮ D | Φ( s ) � = � F ( w ) || w � w ∈ Z n � | ˆ � F ( w ) | where D := diag [Curtis & Meyer’04] ˆ F ( w ) ◮ If f is bent then H ⊗ n D | Φ( s ) � = | s � ◮ Complexity: Θ(1) 19/09/2011 Dagstuhl 5

  17. All Boolean functions 19/09/2011 Dagstuhl 6

  18. All Boolean functions In total there are 2 2 n Boolean functions with n arguments. For n = 8 this is roughly 10 77 . 19/09/2011 Dagstuhl 6

  19. All Boolean functions In total there are 2 2 n Boolean functions with n arguments. For n = 8 this is roughly 10 77 . ◭ Easy ( bent function ) 19/09/2011 Dagstuhl 6

  20. All Boolean functions In total there are 2 2 n Boolean functions with n arguments. For n = 8 this is roughly 10 77 . ◭ Easy ( bent function ) Hard ( delta function ) ◮ 19/09/2011 Dagstuhl 6

  21. All Boolean functions In total there are 2 2 n Boolean functions with n arguments. For n = 8 this is roughly 10 77 . What about the rest? ◭ Easy ( bent function ) Hard ( delta function ) ◮ 19/09/2011 Dagstuhl 6

  22. All Boolean functions In total there are 2 2 n Boolean functions with n arguments. For n = 8 this is roughly 10 77 . What about the rest? ◭ Easy ( bent function ) Three approaches: 1. Grover-like [Grover’00] / quantum rejection sampling [ORR’11] 2. Pretty good measurement 3. Simon-like [R¨ otteler’10, GRR’11] Hard ( delta function ) ◮ 19/09/2011 Dagstuhl 6

  23. Algorithm 1 : Grover-like / quantum rejection sampling 1 ( − 1) s · w ˆ � � ( − 1) s · w F ( w ) | w � �→ √ 2 n | w � w ∈ Z n w ∈ Z n 2 2 19/09/2011 Dagstuhl 7

  24. Algorithm 1 : Grover-like / quantum rejection sampling 1 ( − 1) s · w ˆ � � ( − 1) s · w F ( w ) | w � �→ √ 2 n | w � w ∈ Z n w ∈ Z n 2 2 ◮ Pick ε ∈ R 2 n such that ∀ w : 0 ≤ ε w ≤ | ˆ F ( w ) | 19/09/2011 Dagstuhl 7

  25. Algorithm 1 : Grover-like / quantum rejection sampling 1 ( − 1) s · w ˆ � � ( − 1) s · w F ( w ) | w � �→ √ 2 n | w � w ∈ Z n w ∈ Z n 2 2 ◮ Pick ε ∈ R 2 n such that ∀ w : 0 ≤ ε w ≤ | ˆ F ( w ) | � » ˆ F ( w ) 2 − ε 2 � 1 ◮ Apply R ε : | w �| 0 � �→ | w � w | 0 � + ε w | 1 � ˆ F ( w ) 19/09/2011 Dagstuhl 7

  26. Algorithm 1 : Grover-like / quantum rejection sampling 1 ( − 1) s · w ˆ � � ( − 1) s · w F ( w ) | w � �→ √ 2 n | w � w ∈ Z n w ∈ Z n 2 2 ◮ Pick ε ∈ R 2 n such that ∀ w : 0 ≤ ε w ≤ | ˆ F ( w ) | � » ˆ F ( w ) 2 − ε 2 � 1 ◮ Apply R ε : | w �| 0 � �→ | w � w | 0 � + ε w | 1 � ˆ F ( w ) ◮ If we would measure the last qubit, we would get outcome “ 1 ” w.p. � ε � 2 2 and the post-measurement state would be 1 ( − 1) s · w ε w | w � � � ε � 2 w ∈ Z n 2 19/09/2011 Dagstuhl 7

  27. Algorithm 1 : Grover-like / quantum rejection sampling 1 ( − 1) s · w ˆ � � ( − 1) s · w F ( w ) | w � �→ √ 2 n | w � w ∈ Z n w ∈ Z n 2 2 ◮ Pick ε ∈ R 2 n such that ∀ w : 0 ≤ ε w ≤ | ˆ F ( w ) | � » ˆ F ( w ) 2 − ε 2 � 1 ◮ Apply R ε : | w �| 0 � �→ | w � w | 0 � + ε w | 1 � ˆ F ( w ) ◮ If we would measure the last qubit, we would get outcome “ 1 ” w.p. � ε � 2 2 and the post-measurement state would be 1 ( − 1) s · w ε w | w � � � ε � 2 w ∈ Z n 2 ◮ Instead of measuring, amplify the amplitude on | 1 � 19/09/2011 Dagstuhl 7

  28. Algorithm 1 : Grover-like / quantum rejection sampling 1 ( − 1) s · w ˆ � � ( − 1) s · w F ( w ) | w � �→ √ 2 n | w � w ∈ Z n w ∈ Z n 2 2 ◮ Pick ε ∈ R 2 n such that ∀ w : 0 ≤ ε w ≤ | ˆ F ( w ) | � » ˆ F ( w ) 2 − ε 2 � 1 ◮ Apply R ε : | w �| 0 � �→ | w � w | 0 � + ε w | 1 � ˆ F ( w ) ◮ If we would measure the last qubit, we would get outcome “ 1 ” w.p. � ε � 2 2 and the post-measurement state would be 1 ( − 1) s · w ε w | w � � � ε � 2 w ∈ Z n 2 ◮ Instead of measuring, amplify the amplitude on | 1 � ◮ Complexity: O (1 / � ε � 2 ) 19/09/2011 Dagstuhl 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend