basis light front approach to hadron structure
play

Basis Light-front Approach to Hadron Structure Xingbo Zhao - PowerPoint PPT Presentation

Basis Light-front Approach to Hadron Structure Xingbo Zhao Institute of Modern Physics Chinese Academy of Sciences Lanzhou, China XVIII International Conference on Hadron Spectroscopy and Structure, Guilin China, 08/20/2019 Collaborators


  1. Basis Light-front Approach to Hadron Structure Xingbo Zhao Institute of Modern Physics Chinese Academy of Sciences Lanzhou, China XVIII International Conference on Hadron Spectroscopy and Structure, Guilin China, 08/20/2019

  2. Collaborators Institute of Modern Physics, Chinese Academy of Sciences • – Siqi Xu, Jiangshan Lan, Kaiyu Fu, Hengfei Zhao, Chandan Mondal, Sreeraj Nair Iowa State University • – Shaoyang Jia, Yang Li, Weijie Du, James Vary University of Maryland • – Henry Lamm Indian Institute of Technology, Kanpur • – Dipankar Chakrabarti Beihang University • – Li-Sheng Geng University of Washington • – Gerald Miller 2

  3. Outline • What is light-front and why? – Relativistic bound states • Basis Light-front Quantization – Many body – Rotational symmetry • Applications: – QED: physical electron, positronium – QCD: nucleon, light meson, heavy quarkonium 3

  4. Two Sides of Nuclear Physics Low Energy High Energy 𝜌 Nucleons & mesons Quarks & gluons Mass scale ∼ GeV Mass scale ∼ MeV 4 Need frame-independent wave functions

  5. Light-front Time • We measure nucleon structure by virtual photon • We "see” the world at fixed light-front time ( 𝑢 = 𝑦 ' + 𝑦 ( ) 5

  6. Light-front vs Equal-time Quantization [Dirac 1949] v.s. equal-time dynamics vs light-front dynamics t ≡ x + = x 0 + x 3 t ≡ x 0 i ∂ i ∂ 2 P − ϕ ( x + ) ∂ x + ϕ ( x + ) = 1 ∂ t ϕ ( t ) = H ϕ ( t ) P − = P 0 − P 3 H = P 0 𝑄 * , 𝑄 + , 𝐹 * , 𝐹 + , 𝐾 / 𝑄 , ⃗ 𝐾 Kinematic generators: 6

  7. Why Go To Light-front? • Boost invariant light-front wave functions • Simple vacuum = free theory vacuum + zero modes • Hamiltonian formalism for relativistic systems |proton = 𝑏 ⟩ |𝑣𝑣𝑒 + 𝑐 ⟩ |𝑣𝑣𝑒𝑕 + c ⟩ |𝑣𝑣𝑒𝑕𝑕 + 𝑒 ⟩ |𝑣𝑣𝑒𝑟@ 𝑟 + . . . . ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ |pion = 𝑏 |𝑟@ 𝑟 + 𝑐 |𝑟@ 𝑟𝑕 + c |𝑟@ 𝑟𝑕𝑕 + 𝑒 |𝑟@ 𝑟𝑟@ 𝑟 + . . . . . . . . 7

  8. Basis Light-Front Quantization [Vary et al. , 2008] • Eigenvalue problem for Light-front Hamiltonian 𝑄 B 𝛾 = 𝑄 B |𝛾⟩ Non-perturbative C - 𝑄 B : light-front Hamiltonian B : eigenvalue - 𝑄 hadron mass spectrum C - | ⟩ 𝛾 : eigenvector light-front wave function • Observables O ≡ ⟨𝛾′| I 𝑃|𝛾⟩ 8

  9. Basis Construction 1. Fock-space expansion: e.g. |𝒇 𝒒 Y = 𝑏 |𝑓 + 𝑐 ⟩ |𝑓𝛿 + c ⟩ |𝑓𝑓 ̅ 𝑓 ⟩ + 𝑒 |𝑓𝑓 ̅ 𝑓𝛿 + . . . . ⟩ ⟩ ⟩ ⟩ ⟩ ⟩ |𝐐𝐭 = 𝑏 |𝑓 ̅ 𝑓 + 𝑐 |𝑓 ̅ 𝑓𝛿 + 𝑑 |𝛿 + 𝑒 |𝑓 ̅ 𝑓𝑓 ̅ 𝑓 + . . . . 2. For each Fock particle: N • Transverse: 2D harmonic oscillator basis: Φ L,M ( ⃗ 𝑞 * ) labeled by radial (angular) quantum number n (m); scale parameter b e.g., n=4 m=0 m=1 m=2 • Longitudinal: plane-wave basis, labeled by k • Helicity: labeled by 𝜇 γ = { n γ , m γ , k γ , λ γ } e.g. with and e γ = e ⊗ γ e = { n e , m e , k e , λ e } 9

  10. Basis Truncation Scheme • Symmetries of Hamiltonian: ∑ - Net fermion number: = N f n f i i ∑ - Total angular momentum projection: + s i ) = J z ( m i i ∑ - Longitudinal momentum: = K k i i • Further truncation: - Fock-sector truncation 1, 2, 3…. bosons - Discretization in longitudinal direction 𝑙 j = 0.5, 1.5, 2.5 … fermions [ ] ≤ N max - “N max ” truncation in transverse directions ∑ 2 n i + | m i | + 1 i UV cutoff Λ~𝑐 𝑂 cde ; IR cutoff 𝜇~𝑐/ 𝑂 cde

  11. Features of BLFQ • Basis respects (transverse) rotational symmetry - Basis states are eigenstates of 𝐾 / • Single-particle basis for many-body system - (Anti-)symmetrization of identical particles • Exact factorization of intrinsic and c.m. motion - Harmonic oscillator basis with Nmax truncation • Harmonic oscillator basis suitable for bound states 11

  12. Applications to QED L = − 1 • QED Lagrangian 4 F µ ν F µ ν + ¯ Ψ ( i γ µ D µ − m e ) Ψ • Derived Light-front Hamiltonian ( ) A + = 0 Z − = − F µ + ∂ + A µ + i ¯ d 2 x ⊥ d x + ∂ + Ψ − L P Ψ γ Z + m 2 e + ( i ∂ ⊥ ) 2 − 1 Ψ + 1 Z − = ⊥ ) 2 A j + ¯ d 2 x 2 A j ( i ∂ ⊥ d x Ψ γ 2 i ∂ + kinetic energy terms j + ej µ A µ + e 2 + + e 2 1 γ + ¯ Ψ γ µ A µ 2 j + ( i ∂ + ) 2 j i ∂ + γ ν A ν Ψ 2 vertex instantaneous instantaneous interaction photon fermion interaction interaction 12

  13. Light-front QCD Hamiltonian

  14. Application to QED (I): Physical Electron Δ * 𝑸 + 𝒄 * | e phys i = a | e i + b | e γ i + c | e γγ i + d | ee ¯ e i + . . . . 15

  15. Electron g-2 & GPD E(x, t) BLFQ vs Perturbation Theory X. Zhao, H. Honkanen, P. Maris, J. P. Vary, S. J. Brodsky, Phys. Letts. B737, 65 (2014) N max = K =18 0.115 0.002 Λ =1.5MeV m γ =0.085MeV Schwinger result = 0.1125395... N max = K =42 Λ =2.3MeV m γ =0.056MeV 0.11 E ( x, t → 0) N max = K =578 a e / e 2 0.0015 1 α = Λ =8.7MeV m γ =0.015MeV 137 . 036 0.105 0.001 � 0.1 even N max / 2 0.095 0.0005 odd N max / 2 even N max / 2 fit 0.09 odd N max / 2 fit 0 0 0.05 0.1 0.15 0.2 0 0.2 0.4 0.6 0.8 1 Nonperturbative x ( N max = K − 1 / 2 ) − 1 / 2 q 1 − iq 2 phys (  ∫ e ixP + y − /2 ψ (0) γ + ψ ( y ) e ↓ E ( x ,0, t = q 2 ) = e ↑ dy − • q ) phys (0) y + = 0, y ⊥ = 0 2 m e 1 ∫ • Anomalous magnetic moment a e = E ( x , t → 0) dx 0 • Less than 0.1% deviation from Schwinger result for a e 16 • Largest calculation with basis dim > 28 billion

  16. Application to QED (II): Positronium e + γ e - 18

  17. Energy spectrum and wavefunction See Kaiyu Fu’s talk Saturday (17) pm Nmax = 28,K = 29 0.03 0.02 binding energy ( MeV ) 𝐹 n (𝑁𝑓𝑊) 0.01 0.00 - 0.01 - 0.02 - 2 - 1 0 1 2 Mj lowest 8 states of Mj=0 : parity and charge conjugation parity agree with hydrogen atom. [Kaiyu Fu et al, in preparation] 19

  18. Photon Distribution In Positronium Nmax=28, K=29 ▲ 5 ◆ ■ 1 1 S 0 ● 4 2 1 S 0 ■ 2 3 P 0 ◆ 3 ψ * ψ ● 2 3 P 2 ▲ 2 ▲ ◆ ■ ● 1 ▲ ● ■ ◆ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ▲ ■ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ▲ ■ 0 ■ ▲ ▲ ■ ▲ ■ ▲ ■ ■ ▲ ■ ▲ ▲ ■ ▲ ■ ▲ ■ ■ ▲ ■ ▲ ■ ▲ ■ ▲ ▲ ■ ■ ▲ ▲ ■ ▲ ■ ■ ▲ ▲ ■ ▲ ■ ▲ ■ ▲ ■ ▲ ■ 0.2 0.4 0.6 0.8 x [Kaiyu Fu et al, in preparation] In excited states photons have larger probability at small-x region • Photon is massless, so peak is at small-x region • 20

  19. Application to Heavy Quarkonium 21

  20. Hamiltonian 𝑄 B = 𝐼 ‚ƒ„„ + 𝐼 …†L‚ + 𝐼 ‹Ž†‹• + 𝐼 ‹‹Ž†‹‹ 1. Kinetic Hamiltonian and confining potentials } } 𝜆 ˆ } + 𝑛 ‹ 𝑛 @ } + 𝜆 ˆ ⃗ ‹ 𝐼 ‚ƒ„„ + 𝐼 …†L‚ = ⃗ 𝑟 * 𝜊 * 𝑦 + 1 − 𝑦 − } 𝜖 z (𝑦(1 − 𝑦)𝜖 z ) 𝑛 ‹ + 𝑛 @ ‹ 2. Vector coupling vertex 𝑟 } 𝑄 B = 2𝑕 s 𝑒 ( 𝑦 @ 𝜔 𝑦 𝛿 u 𝑈 w 𝜔 𝑦 𝐵 uy r 𝑟 • g z { |' 3. Vector coupling with instantaneous gluon 𝑟 • 𝑟 } 1 𝑄 B = 𝑕 } s 𝑒 ( 𝑦 @ (𝑗𝜖 + ) } @ 𝜔𝛿 + 𝑈 w 𝜔 𝜔𝛿 + 𝑈 w 𝜔 r z { |' 𝑟 ( @ 𝑟 ˆ @ 22

  21. Energy Spectrum [Hengfei Zhao, In progress] OGE : Yang Li,Maris & Vary ,PRD 17 Kt=11 Nmax=10 Mj=0 me=1.5GeV b=1.64GeV binst=3.2GeV k2l=0.3 k2t=0.1 23

  22. Wave function [Hengfei Zhao, In progress] 𝜃 … (1𝑇) 𝐾/𝜔(1𝑇) State BLFQ OGE 24 OGE; Li, Maris & Vary ,PRD 17

  23. Wave function [Hengfei Zhao, In progress] 𝜓 …• (1𝑄) State 𝜓 …' (1𝑄) BLFQ OGE 25 OGE; Li, Maris & Vary ,PRD 17

  24. Wave function [Hengfei Zhao, In progress] ℎ … (1𝑄) 𝜓 …} (1𝑄) stat e BLFQ OGE 26 OGE; Li, Maris & Vary ,PRD 17

  25. Wave function [Hengfei Zhao, In progress] 𝜃 … (2𝑇) 𝜔(2𝑇) State BLFQ OGE 27 OGE; Li, Maris & Vary ,PRD 17

  26. Decay constants [Hengfei Zhao, In progress] Wave function at the origin – probe short-distance physics LFWF representation • s 𝑒 } 𝑙 * 𝑔 𝑒𝑦 ›|' (𝑦, 𝑙 * ) •,– = s 2𝜌 ( 𝜒 ↑↓∓↓↑ 2 2𝑂 … 2 𝑦(1 − 𝑦) ' Decay constants (GeV) 28

  27. PDA OGE; Li, Maris & Vary ,PRD 17 𝑔 𝜚 •,– 𝑦; 𝜈 = 1 ›|' (𝑦, 𝑐 * = 0) •,– 𝜔 ↑↓∓↓↑ Generalized Van Royen-Weisskopf formula: 4𝜌 2 2𝑂 … 29

  28. Gluon PDF [Hengfei Zhao, In progress] 30

  29. Application to Pion 31

  30. See Jiangshan Lan’s talk See Shaoyang Jia’s talk PDF with QCD Evolution Sunday (18) pm Tuesday (20) pm H LF = PDF for the valence quark result from the light front wave functions obtain by diagonalizing the effective Hamiltonian. Pion PDF Valence u PDF Kaon/Pion large x: (1-x) 1.44 [Lan, Mondal, Jia, Zhao, Vary, PRL122, 172001(2019)]

  31. PDF with QCD Evolution [Lan, Mondal, Jia, Zhao, Vary, arxiv: 1907.01509] The moments of pion valence quark PDF: <x> @4 GeV 2 Valence Gluon Sea BLFQ-NJL 0.489 0.398 0.113 [Aguilar et. al., Pion and Kaon Structure at the Electron-Ion Collider] 0.48(3) 0.41(2) 0.11(2)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend