quadratic c 1 spline collocation for reaction diffusion
play

Quadratic C 1 -spline collocation for reaction-diffusion problems - PowerPoint PPT Presentation

Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Quadratic C 1 -spline collocation for reaction-diffusion problems Torsten Linss 1 Goran Radojev 2 Helena Zarin 2 1 Fakultt fr


  1. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Quadratic C 1 -spline collocation for reaction-diffusion problems Torsten Linss 1 Goran Radojev 2 Helena Zarin 2 1 Fakultät für Mathematik und Informatik, FernUniversität in Hagen, Germany 2 Department of Mathematics and Informatics, University of Novi Sad, Serbia "Numerical analysis for Singularly Perturbed Problems" Workshop dedicated to the 60th birthday of Prof. Martin Stynes TU Dresden, November 16-18, 2011

  2. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Outline Introduction (problem, idea) Layer-adapted mesh Interpolation error Collocation method Stability Maximum-norm a priori error bound Maximum-norm a posteriori error bound An adaptive algorithm Numerical experiments Conclusion

  3. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Reaction-diffusion problem Reaction-diffusion problem L u := − ε 2 u ′′ + ru = f in ( 0 , 1 ) ,     u ( 0 ) = γ 0 , u ( 1 ) = γ 1 (1)  ε ∈ ( 0 , 1 ] , r ≥ ̺ 2 > 0  on [ 0 , 1 ] 

  4. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Reaction-diffusion problem Reaction-diffusion problem L u := − ε 2 u ′′ + ru = f in ( 0 , 1 ) ,     u ( 0 ) = γ 0 , u ( 1 ) = γ 1 (1)  ε ∈ ( 0 , 1 ] , r ≥ ̺ 2 > 0  on [ 0 , 1 ]  1.5 � � 10 � 2 1.0 � � 10 � 1 0.5 0.2 0.4 0.6 0.8 1.0 1.2

  5. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Idea C. de Boor, B. Swartz ( SIAM J. Numer. Anal , 1973): general theory for spline-collocation methods applied to classical (not SP) BVPs

  6. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Idea C. de Boor, B. Swartz ( SIAM J. Numer. Anal , 1973): general theory for spline-collocation methods applied to classical (not SP) BVPs transition to SPBVPs � bounds with “constants” that tend to infinity when ε → 0 � different approach

  7. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Idea C. de Boor, B. Swartz ( SIAM J. Numer. Anal , 1973): general theory for spline-collocation methods applied to classical (not SP) BVPs transition to SPBVPs � bounds with “constants” that tend to infinity when ε → 0 � different approach quadratic C 1 -splines on a special modified Shishkin mesh

  8. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Idea C. de Boor, B. Swartz ( SIAM J. Numer. Anal , 1973): general theory for spline-collocation methods applied to classical (not SP) BVPs transition to SPBVPs � bounds with “constants” that tend to infinity when ε → 0 � different approach quadratic C 1 -splines on a special modified Shishkin mesh Surla, Uzelac ( ZAMM , 1997): quadratic C 1 -spline collocation, layer-adapted mesh, nodal basis, mesh points as dof’s ⇒ O ( N − 2 ln 2 N )

  9. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Idea C. de Boor, B. Swartz ( SIAM J. Numer. Anal , 1973): general theory for spline-collocation methods applied to classical (not SP) BVPs transition to SPBVPs � bounds with “constants” that tend to infinity when ε → 0 � different approach quadratic C 1 -splines on a special modified Shishkin mesh Surla, Uzelac ( ZAMM , 1997): quadratic C 1 -spline collocation, layer-adapted mesh, nodal basis, mesh points as dof’s ⇒ O ( N − 2 ln 2 N ) LRZ ( submitted to NA , 2011): B-spline basis ⇒ O ( N − 2 ln 2 N )

  10. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Properties of the exact solution The Green’s function �G ξ ( x , · ) � 1 ≤ ( ̺ε ) − 1 , �G ξξ ( x , · ) � 1 ≤ 2 ε − 2 � r G ( x , · ) � 1 ≤ 1 ,

  11. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Properties of the exact solution The Green’s function �G ξ ( x , · ) � 1 ≤ ( ̺ε ) − 1 , �G ξξ ( x , · ) � 1 ≤ 2 ε − 2 � r G ( x , · ) � 1 ≤ 1 , Lemma (Derivative bounds) Let r , f ∈ C 4 [ 0 , 1 ] . Then � 1 + ε − k e − ̺ x /ε + ε − k e − ̺ ( 1 − x ) /ε � � u ( k ) ( x ) � ≤ C � � , for x ∈ ( 0 , 1 ) , k = 0 , . . . , 4. Furthermore, the solution can be decomposed as u = v + w 0 + w 1 . For k = 0 , . . . , 4, the regular � � v ( k ) � solution component v satisfies ∞ ≤ C , while for the layer � parts w 0 and w 1 we have � w ( k ) � w ( k ) � ≤ C ε − k e − ̺ x /ε , � ≤ C ε − k e − ̺ ( 1 − x ) /ε , x ∈ [ 0 , 1 ] . � � � � 0 ( x ) 1 ( x )

  12. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Smoothed Shishkin mesh Shishkin-mesh transition point � σε � λ := min ̺ ln N , q , q ∈ ( 0 , 1 / 2 ) , σ > 0

  13. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Smoothed Shishkin mesh Shishkin-mesh transition point � σε � λ := min ̺ ln N , q , q ∈ ( 0 , 1 / 2 ) , σ > 0 The mesh ∆ : x 0 < x 1 < · · · < x N is generated by x i = ϕ ( i / N ) with the mesh generating function λ  q t t ∈ [ 0 , q ] ,   κ ( t ) := p ( t − q ) 3 + λ ϕ ( t ) := q t t ∈ [ q , 1 / 2 ] ,  1 − ϕ ( 1 − t ) t ∈ [ 1 / 2 , 1 ] ,  where p is chosen such that ϕ ( 1 / 2 ) = 1 / 2. Note, that ϕ ∈ C 1 [ 0 , 1 ] with � ϕ ′ � ∞ , � ϕ ′′ � ∞ ≤ C .

  14. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion The interpolation error for piecewise quadratic splines Notation : There midpoints of the mesh intervals J i := [ x i − 1 , x i ] are denoted with x i − 1 / 2 := ( x i − 1 + x i ) / 2 = x i − 1 + h i / 2 , i = 1 , . . . , N . For, m , ℓ ∈ N , m < ℓ , let � � S m s ∈ C m [ 0 , 1 ] : s | J i ∈ Π ℓ , for i = 1 , . . . , N ℓ (∆) := .

  15. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion S 0 2 -interpolation Given an arbitrary function g ∈ C 0 [ 0 , 1 ] , consider the interpolation problem of finding I 0 2 g ∈ S 0 2 (∆) with I 0 I 0 � � � � 2 g i = g i , i = 0 , . . . , N , and 2 g i − 1 / 2 = g i − 1 / 2 , i = 1 , . . . , N .

  16. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion S 0 2 -interpolation Given an arbitrary function g ∈ C 0 [ 0 , 1 ] , consider the interpolation problem of finding I 0 2 g ∈ S 0 2 (∆) with I 0 I 0 � � � � 2 g i = g i , i = 0 , . . . , N , and 2 g i − 1 / 2 = g i − 1 / 2 , i = 1 , . . . , N . Theorem 1 Assume r , f ∈ C 4 [ 0 , 1 ] . Then the interpolation error u − I 0 2 u for the solution of (1) on a smoothed Shishkin mesh with σ ≥ 3 satisfies CN − 3 ln 3 N , � u − I 0 � � 2 u ∞ ≤ � � � ε 2 max CN − 2 ln 2 N . u − I 0 � ′′ � 2 u � ≤ � � i − 1 / 2 � i = 1 ,..., N

  17. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion S 1 2 -interpolation Given an arbitrary function g ∈ C 0 [ 0 , 1 ] , consider the interpolation problem of finding I 1 2 g ∈ S 1 2 (∆) with I 1 I 1 I 1 � � � � � � 2 g 0 = g 0 , 2 g i − 1 / 2 = g i − 1 / 2 , i = 1 , . . . , N , 2 g N = g N .

  18. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion S 1 2 -interpolation Given an arbitrary function g ∈ C 0 [ 0 , 1 ] , consider the interpolation problem of finding I 1 2 g ∈ S 1 2 (∆) with I 1 I 1 I 1 � � � � � � 2 g 0 = g 0 , 2 g i − 1 / 2 = g i − 1 / 2 , i = 1 , . . . , N , 2 g N = g N . Theorem 2 Assume r , f ∈ C 4 [ 0 , 1 ] . Then the interpolation error u − I 1 2 u for the solution u of (1) on a smoothed Shishkin mesh with σ ≥ 4 satisfies � � ≤ CN − 4 ln 4 N , u − I 1 � � max 2 u � � i � � i = 0 ,..., N ≤ CN − 3 ln 3 N , � u − I 1 � � 2 u � ∞ ε 2 max � � ≤ CN − 2 ln 2 N . u − I 1 � ′′ � 2 u � � i − 1 / 2 � � i = 1 ,..., N

  19. Introduction Layer-adapted mesh The interpolation error The collocation method Numerical experiments Conclusion Let ∆ be an arbitrary partition of [ 0 , 1 ] . Our discretisation is: Find u ∆ ∈ S 1 2 (∆) such that � � u ∆ , 0 = γ 0 , L u ∆ i − 1 / 2 = f i − 1 / 2 , i = 1 , . . . , N , u ∆ , N = γ 1 . Let { ϕ i } N + 1 i = 0 be the B-spline basis in S 1 2 (∆) . Then we may represent u ∆ as N + 1 � u ∆ := α k ϕ k , k = 0 where the α k are determined by collocation.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend