12
play

12 Implicit Spatial Discretization for Advection-Diffusion-Reaction - PowerPoint PPT Presentation

12 Implicit Spatial Discretization for Advection-Diffusion-Reaction Equation Kundan Kumar 10-Dec-2008 1/35 1/35 12 Introduction Applications of Advection-Diffusion Reaction


  1. 12 Implicit Spatial Discretization for Advection-Diffusion-Reaction Equation Kundan Kumar 10-Dec-2008 1/35 1/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  2. 12 Introduction Applications of Advection-Diffusion Reaction Equations Chemical Vapor Deposition 2/35 2/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  3. 12 Introduction Setting: • Advection-Diffusion-Reaction Equation • φ t + uφ x = ǫφ xx + s ( x, t ) , • Advection Velocity : u • Diffusion Coefficient : ǫ • Source term : s ( x, t ) s ( x, t ) = b 2 ǫ cos( b ( x − ut )) . 3/35 3/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  4. 12 Introduction Setting: • Exact Solution: φ = cos( b ( x − ut )) + exp( − a 2 ǫt ) cos( a ( x − ut )) . • Dirichlet Boundary Conditions. • Initial Condition, φ ( x, t ) at t = 0 . 4/35 4/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  5. 12 Contents 1 Discretization 6 1.1 Order Condition . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Examples 10 3 Stability 16 4 Time Integration Aspect 18 5 Numerical Computations 19 6 Conclusion 35 5/35 5/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  6. 12 1. Discretization φ t + uφ x = ǫφ xx + s ( x, t ) Discretization: 1 1 � � β k w ′ j + k ( t ) = h − 2 α k w j + k ( t ) k = − 1 k = − 1 1 � + β k g j + k ( t ) k = − 1 1 � w j ( t ) ≈ φ ( x j , t ); g j ( t ) = s ( x j , t ); β k = 1 . k = − 1 6/35 6/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  7. 12 Discretization Vector Notation: Bw ′ ( t ) = Aw ( t ) + Bg ( t ) , A = ( a ij ) = ( h − 2 α j − i ) B = ( b ij ) = ( β j − i ) . Define: ξ k = ( − 1) k α − 1 + α 1 , η k = ( − 1) k β − 1 + β 1 . 7/35 7/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  8. 12 1.1. Order Condition Let φ h be the restriction of the exact solution φ to the grid. Spatial truncation error: σ h ( t ) = Bφ ′ h ( t ) − Aφ h ( t ) − Bg ( t ) . Truncation error in a point ( x j , t ) equals: σ h,j ( t ) = h − 2 ( C 0 φ + hC 1 φ x + h 2 C 2 φ xx + h 3 C 3 φ xxx + ... ) | ( x j ,t ) Order Condition : The discretization has order q if: σ h = O ( h q ) , translates to: C k = O ( h q +2 − k ) , k = 0 , 1 , · · · , q + 2 . 8/35 8/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  9. 12 Order Condition Error coefficients: C 0 = − ξ 0 , C 1 = − ξ 1 − uhη 0 , C k = − 1 k ! ( ξ k + kuhη k − 1 − k ( k − 1) ǫη k − 2 ); k ≥ 2 . where, ξ k = ( − 1) k α − 1 + α 1 , η k = ( − 1) k β − 1 + β 1 . Use the order condition to determine α j and β j . 9/35 9/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  10. 12 2. Examples Explicit Central Difference j = u 2 h ( w j − 1 − w j +1 ) + ǫ w ′ h 2 ( w j − 1 − 2 w j + w j +1 ) + g j , Implicit Central Difference 1 u 6( w ′ j − 1 + 4 w ′ j + w ′ j +1 ) = 2 h ( w j − 1 − w j +1 ) h 2 ( w j − 1 − 2 w j + w j +1 ) + 1 ǫ + 6( g j − 1 + 4 g j + g j +1 ) 10/35 10/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  11. 12 Examples Define: µ = uh/ǫ ( Peclet Number ) . Explicit Adaptive Upwinding j = u 2 h ( w j − 1 − w j +1 ) + ǫ + 0 . 5 uhκ w ′ ( w j − 1 − 2 w j + w j +1 ) + g j , h 2 Where κ is defined as: κ = max (0 , 1 − 2 /µ ) . 11/35 11/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  12. 12 Examples Implicit Adaptive Upwinding 1 j − 1 + (1 − 1 u 2 κw ′ 2 κ ) w ′ j = 2 h ( w j − 1 − w j +1 ) + ǫ + 0 . 5 uhκ ( w j − 1 − 2 w j + w j +1 ) h 2 + 1 2 κg j − 1 + (1 − 1 2 κ ) g j . 12/35 12/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  13. 12 Examples Peclet Number µ : µ = uh/ǫ. Explicit Exponential Fitting 1 � w ′ α k w j + k + g j , j = k = − 1 exp( µ ) 1 α − 1 = uh exp( µ ) − 1 , α 1 = uh exp( µ ) − 1 , α 0 = − ( α 1 + α − 1 ) . 13/35 13/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  14. 12 Implicit Exponential Fitting 1 � β − 1 w ′ j − 1 + β 0 w ′ j + β 1 w ′ j +1 = α k w j + k + β − 1 g j − 1 + β 0 g j + β 1 g j +1 . k = − 1 where β − 1 = 1 � exp( µ ) − 1 − 1 exp( µ ) � , 2 µ β 0 = 1 2 , β 1 = 1 � 1 1 � µ − . 2 exp( µ ) − 1 14/35 14/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  15. 12 Examples Compact Schemes: α − 1 = ǫ + 1 2 uh − uh ( β 1 − β − 1 ) , α 1 = ǫ − 1 2 uh − uh ( β 1 − β − 1 ) , α 0 = − ( α − 1 + α 1 ) , β − 1 = 1 γ (6 + 3 µ − µ 2 ) , β 0 = 1 γ (60 − 4 µ 2 ) , β 1 = 1 γ (6 − 3 µ − µ 2 ) and γ is a scaling factor given by: γ = 72 − 6 µ 2 . 15/35 15/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  16. 12 3. Stability Requirement: || exp( tB − 1 A ) || ≤ C, for all t > 0 . We can write: A = V diag ( a k ) V − 1 , B = V diag ( b k ) V − 1 , with a k , b k eigenvalues of A, B respectively. Define global error e ( t ) : e ( t ) = V − 1 e ( t ) e ( t ) = φ h ( t ) − w ( t ) , ˆ Discretization error σ h ( t ) : σ h ( t ) = Bφ ′ σ h ( t ) = V − 1 σ h ( t ) . h ( t ) − Aφ h ( t ) − Bg ( t ) , ˆ 16/35 16/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  17. 12 Stability The error equation then reads: d b k dt ˆ e ( t ) = a k ˆ e ( t ) + ˆ σ h ( t ) . Stability if: Re ( a k /b k ) ≤ 0 | a k | + | b k | > 0 . and Result : For the three point scheme considered with C 0 = C 1 = 0 , C 2 = O ( h ) , and assume that: h − 2 | α 0 | + | β 0 − 1 2 | > 0 , then the stability condition holds iff: 2 ah ( β 1 − β − 1 ) ≥ α 0 , α 0 (1 − 2 β 0 ) ≥ 0 . and 17/35 17/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  18. 12 4. Time Integration Aspect Ode system: Bw ′ ( t ) = Aw + Bg ( t ) . Define: F ( t, w ) = Aw ( t ) + Bg ( t ) . • We use the θ method (with θ = 0 . 5 : Bw n +1 = Bw n + 0 . 5 τF ( t n , w n ) + 0 . 5 τF ( t n +1 , w n +1 ) . • With Explicit method, there is some amount of ’implicitness’!. • Stability conditions in general become more stringent in case of implicit discretization method. • For an implicit A-stable ODE method for time stepping, little difference between the two methods. 18/35 18/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  19. 12 5. Numerical Computations Error for Implicit vs Explicit Central Difference 19/35 19/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  20. 12 Implicit vs Explicit Adaptive Upwinding 20/35 20/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  21. 12 Implicit vs Explicit Exponential Fitting 21/35 21/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  22. 12 Implicit vs Explicit 22/35 22/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  23. 12 Implicit vs Explicit Central Difference 23/35 23/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  24. 12 Implicit vs Explicit Adaptive Upwinding 24/35 24/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  25. 12 Implicit vs Explicit Exponential Fitting 25/35 25/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  26. 12 26/35 26/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  27. 12 27/35 27/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  28. 12 28/35 28/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  29. 12 29/35 29/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  30. 12 30/35 30/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  31. 12 31/35 31/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  32. 12 32/35 32/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  33. 12 33/35 33/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  34. 12 34/35 34/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

  35. 12 6. Conclusion When do we use Implicit Spatial Discretization? • To achieve higher order without using wider stencils. • To reduce the artificial oscillations in the numerical solution. • Provides extra degrees of freedom for the numerical scheme. Disadvantages • Positivity may be lost. • Stringent conditions for explicit time integration methods. 35/35 35/35 ◭ ◭ ◭ ◭ � ◮ ◮ ◭ ◭ � ◮ ◮ ◮ ◮

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend