conflict free trajectory op0misa0on for complex departure
play

Conflict(free(trajectory(op0misa0on(for(complex( - PowerPoint PPT Presentation

Conflict(free(trajectory(op0misa0on(for(complex( departure(procedures(( 6 th (ICRAT(Conference,(Istanbul,(Turkey( San$%Vilardaga ( Xavier%Prats% san0.vilardaga@ctae.org( xavier.prats@upc.edu( ASCAMMFCTAE,(Aerospace(Research(


  1. Conflict(free(trajectory(op0misa0on(for(complex( departure(procedures(( 6 th (ICRAT(Conference,(Istanbul,(Turkey( San$%Vilardaga ( Xavier%Prats% san0.vilardaga@ctae.org( xavier.prats@upc.edu( ASCAMMFCTAE,(Aerospace(Research( UPC,(Technical(University(of(Catalonia,( and(Technology(Centre,(Barcelona( Barcelona( Taking research further

  2. Introduc0on( • SESAR(and(NextGen(aim(at(improvement(of(air( traffic(efficiency( • Hence(new,(enhanced,(opera0ons( – Con0nuous(Climb(Departures((CCD)( – Con0nuous(Cruise(Climb((CCC)( – Con0nuous(Descent(Approaches((CDA)( • However,(…(

  3. Problema0c( Huge(variety(of(aircraT( and(configura0ons( Uncertainty(along( conflic0ng(areas( Impact(on(Air(Traffic( Capacity(

  4. Proposed(solu0ons(in(the(literature( • Dynamic(speed(requests( • Mul0ple(different(FPA(phases( • Requested(Time(of(Arrival((RTA)(at(a(specific( point( • etc.( • All(accep0ng(subFop0mal(trajectories(

  5. Objec0ve( • Dynamic(4D(trajectory(op0miser( • Complex((and(realis0c)(lateral(and(ver0cal( trajectories( – Waypoints( – Flight(phases( • Self(separa0on(from(surrounding(traffic(

  6. Methodology(

  7. Methodology( Ini0al(climb( Clean(config.( Constant(Mach(

  8. Methodology( • Op0mal(Control(Theory( – Dynamics( – State( – Control( – Objec0ve( – Constraints( – Solved(with(colloca0on(methods(and(NLP(

  9. Dynamics( • PointFMass(model( • Calm(winds( • Flat(nonFrota0ng(earth( • Specific(A320(performance(model( – Aerodynamic(and(propulsive(forces( – Fuel(consump0on(

  10. State(Variables( x = [ v γ χ n e h ] 1 = v ˙ = m ( T − D − mg sin γ ) g = ˙ = v ( n z cos φ − cos γ ) γ g sin φ = ˙ = cos γ n z χ v = n ˙ = v cos γ cos χ = e ˙ = v cos γ sin χ ˙ h = v sin γ = s ˙ = v cos γ

  11. Control(Variables( u = [ n z φ π ] . n z = L mg

  12. Objec0ve(Func0on( Z t f J ( t ) = FF ( x , u , p , t ) d t. t 0 ✓ ◆ X X 3 3 ◆ i √ ✓ N 1 X X c F F M j FF = n e δ θ √ ij θ i =0 j =0

  13. Opera0onal(Constraints( Constraint Definition Operating airspeeds V MCA ≤ v CAS ( t ) ≤ V MO No deceleration allowed v ( t ) ≥ 0 ˙ ˙ No descent allowed h ( t ) ≥ 0 Procedure Design Gradient (PDG) h ( t ) ≥ 0 . 033 s ( t ) Load factor 0 . 85 ≤ n z ( t ) ≤ 1 . 15 − 25 � ≤ φ ( t ) ≤ 25 � Bank angle

  14. General(problem(formula0on( • Ini0al(guess((C++)( • Discre0sa0on(with(direct(colloca0on(method( (GAMS)( • NLP(solver(interface((GAMS)( • Results((C++)(

  15. General(problem(formula0on( !% Phase(1( Phase(2( Phase(3( 30(s( 60(s( 50(s( 40(s( 70(s( 67(s( WP1( WP2( WP3(

  16. Separa0on(assurance( • Self(separa0on(strategies((ASAS)( • Collabora0ve(scenario( – Fully(coopera0ve( – Semi(coopera0ve( – Non(coopera0ve( • Target(modelling( • Separa0on(geometry(

  17. Separa0on(assurance( Flight Plan Intent information initial state n o e o Trajectory IntruderTrajectory REAL Position ADS-B Out h o Optimiser Speed t o Out Intruder Ownship IntruderTrajectory PRED In n o Spline fitting e o Trajectory Trajectory Intent info. ADS-B Out h o Predictor Position Optimiser t o Speed initial state Estimated Intruder OwnshipTrajectory Performance Flight Plan

  18. Separa0on(formula0on( !%

  19. Intruder(representa0on( • Separate(a(moving(vehicle(from(a(moving( target( • Separa0on(of(ownship(4D(posi0on(with( respect(to(target(4D(geometry(…( • …(at(specific(ownship(0mes(of(sample!( • Use(of(polynomial(fifng((splines)(

  20. Intruder(representa0on( • n intruder (t)( 0me( • e intruder (t)( 0me( • h intruder (t)( 0me(

  21. Separa0on(geometry( • Horizontal(vs(Ver0cal(disjunc0on( (Cylinder( g h ( t ) ≥ 0 ∨ g v ( t ) ≥ 0 (( (Superegg( ✓ ∆ n 2 + ∆ e 2 ◆ p ◆ p ✓ ∆ h 2 + ≥ 1 2 2 d h d v

  22. Fixed(lateral(routes( • Due(to(constraints(in(ATC(or(strategic( deconflic0on(

  23. Results(

  24. Results( 10( 9( 8( 7( 6( 5( 4( 3( 2( 1( 0( 260( 280( 300( 320( 340( 360(

  25. Results(

  26. Results(

  27. Conclusions( • Generic(op0misa0on(framework( • Op0mal(control(formula0on( • Flexible(defini0on(of(complex(routes( • SemiFcoopera0ve(separa0on(assurance( • Can(be(integrated(in(many(scenarios(

  28. Further(work( • Conformance(monitoring( In (from intruder) Ownship Time to Compute conflict ADS-B Threshold Expected system error Pos Aircraft category Pos Pos+Vel Intent info. Pos+Vel Intent info. Estimated Residuals Trajectory Conformance Continue Intruder Trajectory No intruder > Predictor Monitoring as planned performance Threshold Yes Ownship Continue No Intents Yes Replanning performance change? as planned data New Ownship Trajectory

  29. Further(work( • Conformance(monitoring( 600 Prediction at t=95s Vertical error (ft) Initial prediction (t=0) Prediction at t=171s 450 Aggregate prediction Prediction at t=273s 300 150 0 5 10 15 20 25 30 Along path distance (NM)

  30. Further(work( More(info(in(ATIO(Conference( June(2014,(Atlanta,(Georgia(

  31. Thank(you(for(your(aken0on( Any(Ques0ons?( San$%Vilardaga ( Xavier%Prats% san0.vilardaga@ctae.org( xavier.prats@upc.edu( ASCAMMFCTAE,(Aerospace(Research( UPC,(Technical(University(of(Catalonia,( and(Technology(Centre,(Barcelona( Barcelona( Taking research further

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend