quadratic spline collocation for volterra integral
play

Quadratic spline collocation for Volterra integral equations D. - PDF document

Quadratic spline collocation for Volterra integral equations D. Saveljeva University of Tartu, Estonia Consider Volterra integral equation t y ( t ) = 0 K ( t, s, y ( s )) ds + f ( t ) , t [0 , T ] , (1) with given functions f : [0 , T


  1. Quadratic spline collocation for Volterra integral equations D. Saveljeva University of Tartu, Estonia

  2. Consider Volterra integral equation � t y ( t ) = 0 K ( t, s, y ( s )) ds + f ( t ) , t ∈ [0 , T ] , (1) with given functions f : [0 , T ] → I R , K : S × I R → I R and set S = { ( t, s ) | t ∈ [0 , T ] , s ∈ [0 , t ] } . Take a mesh 0 = t 0 < t 1 < . . . < t N = T , denote h i = t i − t i − 1 , i = 1 , . . . , N . The method uses collocation points τ i = t i − 1 + ch i , i = 1 , . . . , N , with c ∈ (0 , 1]. There are imposed the following collocation conditions � τ i u ( τ i ) = 0 K ( τ i , s, u ( s )) ds + f ( τ i ) , i = 1 , . . . , N, and initial values u (0) = y (0) , u ′ (0) y ′ (0) . = We replaced one of initial conditions by the bound- ary condition u ′′ ( t N − 1 − 0) = u ′′ ( t N − 1 + 0) .

  3. We have (1) ⇔ y = Ky + f with � t ( Kv )( t ) = 0 K ( t, s, v ( s )) ds, v ∈ C [0 , T ] . Then our method are u = P N Ku + P N f, where the projections P N are determined by ( P N f )(0) = f (0) , ( P N f )( τ i ) = f ( τ i ) , i = 1 , . . . , N, ( P N f ) ′′ ( t N − 1 − 0) = ( P N f ) ′′ ( t N − 1 + 0) , P N : C [0 , T ] → C [0 , T ] .

  4. Let E be Banach spaces. Suppose we have an equation u = Ku + f, (2) where K ∈ K ( E, E ) and f ∈ E . Let it be given a sequence of approximating operators P N ∈ L ( E, E ), N = 1 , 2 , . . . . Consider also equations u N = P N Ku N + P N f. (3) General convergence theorem. Suppose u = Ku only if u = 0 and P N u → u for all u ∈ E in the process N → ∞ . Then 1. (2) has the unique solution u ∗ ; 2. there is N 0 such that for N ≥ N 0 , (3) has the unique solution u ∗ N ; N → u ∗ as N → ∞ ; 3. u ∗

  5. 4. there are C 1 , C 2 , C 3 > 0 such that C 1 � P N u ∗ − u ∗ � ≤ � u ∗ N − u ∗ � ≤ C 2 � P N u ∗ − u ∗ � (4) and N − P N u ∗ � ≤ C 3 � K ( P N u ∗ − u ∗ ) � . � u ∗ (5) P N u → u ∀ u ∈ E ⇒ (4) and (5); ⇓ � P N K − K � → 0 ⇒ (4); ⇓ P N K → K compactly ⇒ (4); ⇓ I − P N K → I − K stably or regularly ⇒ (4) and N − P N u ∗ � ≤ const � P N K ( P N u ∗ − u ∗ ) � . � u ∗

  6. Results: c ∈ (0 , 1) In the space C [0 , T ] for quasi-uniform mesh we get P N → I as N → ∞ . C 1 [0 , T ] In the space for mesh with h N /h N − 1 = O (1) it holds P N → I as h max → 0. c = 1 C 1 [0 , T ] In the space C [0 , T ] and it holds P N = O ( N ). There is no compact convergence P N K → K , hence, there is no convergence � P N K − K � → 0 in both spaces. There is regular convergence I − P N K → I − K in the space C [0 , T ]. There is regular convergence in the Conjecture: space C 1 [0 , T ].

  7. | u N ( τ i ) − y ( τ i ) | = | u N ( τ i ) − P N y ( τ i ) | ≤ � u N − P N y � ≤ ≤ const � P N K ( P N y − y ) � Results in superconvergence: Suppose that K and ∂ K /∂s are con- Theorem. tinuous on { ( t, s ) | 0 ≤ s ≤ t ≤ T } and y ′′′ ∈ Lip 1. Then, for c = 1 / 2, it holds 1 ≤ i ≤ N | u N ( t i − 1 + h/ 2) − y ( t i − 1 + h/ 2) | = O ( h 4 ) . max Theorem. Suppose that K , ∂ K /∂s , ∂ K /∂t , ∂ 2 K /∂t 2 and ∂ 3 K /∂t 3 are continuous on { ( t, s ) : 0 ≤ s ≤ t ≤ T } . Suppose also the function t �→ K ( t, t ) is twice continuously differentiable on [0 , T ] and y ′′′ ∈ Lip 1. Then, for c = 1, 0 ≤ i ≤ N | u N ( t i ) − y ( t i ) | = O ( h 4 ) max in the case of uniform mesh. Conjecture: There is superconvergence in the col- location points in case of c = O ( h 2 ).

  8. Numerical examples: We considered a test equation � t y ( t ) = λ 0 y ( s ) ds + f ( t ) , t ∈ [0 , 1] , (6) with function f ( t ) = 1 2((1 − λ ) sin t + (1 + λ ) cos t + (1 − λ ) e t ) , and the exact solution y ( t ) = (sin t + cos t + e t ) / 2. Another test equation is � t y ( t ) = 0 ( t − s ) y ( s ) ds + sin t, t ∈ [0 , 1] , with the exact solution y ( t ) = (2 sin t + e t − e − t ) / 4. We calculated the error of the method � u − y � ∞ approximately as 0 ≤ k ≤ 10 | u ( t n − 1 + k 10 h ) − y ( t n − 1 + k max max 10 h ) | . 1 ≤ n ≤ N

  9. Quadratic spline collocation for test equation (6): f ( t ) = sin t + e t λ = − 1 , N 4 16 64 1 . 13 · 10 − 3 2 . 21 · 10 − 5 3 . 63 · 10 − 7 c = 1 51 61 63 2 . 54 · 10 − 2 1 . 87 · 10 − 3 1 . 21 · 10 − 4 13 16 16 4 . 41 · 10 − 3 8 . 84 · 10 − 5 1 . 46 · 10 − 6 c = 0 . 5 50 61 63 2 . 54 · 10 − 2 1 . 87 · 10 − 3 1 . 21 · 10 − 4 13 16 16 7 . 71 · 10 − 3 1 . 62 · 10 − 4 2 . 70 · 10 − 6 c = 0 . 1 48 60 63 7 . 11 · 10 − 2 5 . 81 · 10 − 3 3 . 85 · 10 − 4 12 15 16 f ( t ) = (3 cos t − sin t − e t ) / 2 λ = 2 , N 4 16 64 1 . 88 · 10 − 3 4 . 02 · 10 − 5 6 . 82 · 10 − 7 c = 1 47 59 66 2 . 64 · 10 − 2 2 . 52 · 10 − 3 1 . 74 · 10 − 4 10 14 16 2 . 15 · 10 − 3 4 . 94 · 10 − 5 8 . 43 · 10 − 7 c = 0 . 7 44 59 62 4 . 10 · 10 − 2 3 . 40 · 10 − 3 2 . 27 · 10 − 4 12 15 16 7 . 24 · 10 − 3 1 . 56 · 10 − 4 2 . 62 · 10 − 6 c = 0 . 1 46 60 63 6 . 99 · 10 − 2 5 . 79 · 10 − 3 3 . 85 · 10 − 4 12 15 16 t � Numerical results for y ( t ) = ( t − s ) y ( s ) ds + sin t : 0 N 8 32 128 4 . 81 · 10 − 5 9 . 20 · 10 − 7 1 . 51 · 10 − 8 c = 1 52 61 63 1 . 95 · 10 − 4 3 . 71 · 10 − 6 6 . 07 · 10 − 8 c = 0 . 5 53 61 63 3 . 56 · 10 − 4 6 . 84 · 10 − 6 1 . 12 · 10 − 7 c = 0 . 1 52 61 63

  10. Numerical results in superconvergence for test equation (6): f ( t ) = sin t + e t λ = − 1 , N 4 16 64 1 . 2 · 10 − 4 6 . 3 · 10 − 7 2 . 6 · 10 − 9 c = 1 186 239 252 8 . 1 · 10 − 5 4 . 5 · 10 − 7 1 . 9 · 10 − 9 c = 0 . 5 177 236 252 c = 10 − 6 1 . 6 · 10 − 5 8 . 0 · 10 − 8 3 . 3 · 10 − 10 203 244 245 f ( t ) = (3 cos t − sin t − e t ) / 2 λ = 2 , N 4 16 64 1 . 8 · 10 − 4 1 . 1 · 10 − 5 5 . 3 · 10 − 8 c = 1 161 207 249 1 . 2 · 10 − 4 6 . 8 · 10 − 7 3 . 1 · 10 − 9 c = 0 . 5 173 221 247 c = 10 − 6 9 . 3 · 10 − 5 6 . 2 · 10 − 7 2 . 7 · 10 − 9 150 227 251

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend