q u a n t u m m a r t i n g a l e t h e o r y f o r e n t
play

Q u a n t u m M a r t i n g a l e T h e o r y - PowerPoint PPT Presentation

Q u a n t u m M a r t i n g a l e T h e o r y f o r E n t r o p y P r o d u c t i o n R O S A R I O F A Z I O G O N Z A L O M A N Z A N O 1 , 2 D G A R R O L D N


  1. Q u a n t u m M a r t i n g a l e T h e o r y f o r E n t r o p y P r o d u c t i o n R O S A R I O F A Z I O G O N Z A L O M A N Z A N O 1 , 2 É D G A R R O L D Á N 1 , 2 1 1 Abdus Salam ICTP, Trieste (Italy). 2 Scuola Normale Superiore, Pisa (Italy). Workshop on Martingales in Finance and Physics ICTP, 24 May 2019

  2. * Outline O u t l i n e : ● I n t r o d u c t i o n ● F r o m s t o c h a s t i c t o q u a n t u m t h e r mo d y n a mi c s ● S u p e r p o s i t i o n a n d c o h e r e n c e ● T h e r mo d y n a mi c s a n d fm u c t u a t i o n s f o r q u a n t u m s y s t e ms ● Q u a n t u m t r a j e c t o r i e s ● E n t r o p y p r o d u c t i o n a n d fm u c t u a t i o n t h e o r e ms ● Q u a n t u m Ma r t i n g a l e T h e o r y ● C l a s s i c a l - Q u a n t u m s p l i t o f e n t r o p y p r o d u c t i o n ● S t o p p i n g - t i me s a n d fj n i t e - t i me i n fj mu m ● Ma i n c o n c l u s i o n s

  3. * From stochastic to quantum thermodynamics Q u a n t u m fm u c t u a t i o n s , T h e r ma l fm u c t u a t i o n s c o h e r e n c e , e n t a n g l e me n t . . . Quantum Thermodynamics Stochastic Thermodynamics F u n d a me n t a l a n d p r a c t i c a l q u e s t i o n s : ● H o w h e a t , w o r k a n d e n t r o p y a r e d e fj n e d ? ● H o w t o d e fj n e e fg e c t i v e “ t r a j e c t o r i e s ” ? ● C a n q u a n t u m e fg e c t s mo d i f y t h e r mo d y n a mi c b e h a v i o r ? ● I n fm u e n c e o f q u a n t u m me a s u r e me n t s ? ● H o w s ma l l c a n t h e r ma l ma c h i n e s b e ? [J. Roßnagel, et al. Science (2016)]

  4. * Superposition and coherence S u p e r p o s i t i o n p r i n c i p l e : and are possible states of a quantum system If too Quantum superposition: Classical particles: both “left” and “right” slits either “left” or “right” slits Modern which-path experiment with stochastically arriving phthalocyanine (PcH2) molecules (one at a time) [T. Juffmann et al. Nat. Nano (2012)]

  5. * Superposition and coherence C l a s s i c a l mi x t u r e s v s . s u p e r p o s i t i o n s t a t e s : Example: Two-level system (qubit): density operator (matrix) ● Compare the following two states: state of the system is either with probs. with state of the system is i.e. both COHERENCES

  6. * Outline O u t l i n e : ● I n t r o d u c t i o n ● F r o m s t o c h a s t i c t o q u a n t u m t h e r mo d y n a mi c s ● S u p e r p o s i t i o n a n d c o h e r e n c e ● T h e r mo d y n a mi c s a n d fm u c t u a t i o n s f o r q u a n t u m s y s t e ms ● Q u a n t u m t r a j e c t o r i e s ● E n t r o p y p r o d u c t i o n a n d fm u c t u a t i o n t h e o r e ms ● Q u a n t u m Ma r t i n g a l e T h e o r y ● C l a s s i c a l - Q u a n t u m s p l i t o f e n t r o p y p r o d u c t i o n ● S t o p p i n g - t i me s a n d fj n i t e - t i me i n fj mu m ● Ma i n c o n c l u s i o n s

  7. * Quantum fluctuation theorems F l u c t u a t i o n T h e o r e ms i n q u a n t u m s y s t e ms Thermal fluctuations + Quantum fluctuations ● Thermodynamic quantities are defined through (projective) quantum measurements ● which allow us to define “trajectories” using the measurement outcomes. Useful for work Fluctuation Theorems for isolated driven quantum systems ● Open quantum systems? Scheme needs to be extended to the environment → Environmental monitoring ● Usually the environment is assumed to be a thermal reservoir ● More general environments such as finite-size and/or engineered quantum reservoirs ? ● Reviews: M. C a mp i s i R e v . Mo d . P h y s . ( 2 0 1 1 ) ; M. E s p o s i t o R e v . Mo d . P h y s . ( 2 0 0 9 ) e t a l . e t a l .

  8. * Collision-like open system evolution System interacts “sequentially” with the environment: Trajectories now comprise all the measurements in system and environmental ancillas: ● The continuous limit can be obtained if the following limit exist: ● = finite

  9. * Quantum jump trajectories Quantum-jump trajectories: Probability during any dt: Measurements backaction can be recasted as: smooth evolution quantum jump of type k Example : Optical cavity Click! trajectory average Photo-detector

  10. * Quantum jump trajectories Evolution under environmental monitoring Assuming an initial pure state and keeping the record of the outcomes: S t o c h a s t i c S c h r ö d i n g e r e q u a t i o n ( L a n g e v i n - l i k e ) Introducing Poisson increments Smooth evolution (No jump) Jump of type k The average evolution is a Lindblad master equation (Fokker-Planck-like): STEADY STATE: micro-states populations/probabilities of micro-states

  11. * Entropy production and FT’s Trajectories: Initial and final measurements (system) + jumps and times (environment): ● with environmental record environment Entropy production: system ● entropy entropy Local detailed-balance ● e.g. for a thermal bath: For Lindblad operators coming in pairs: ● For any self-adjoint Lindblad operator ● Fluctuation theorems: ● [ G . Ma n z a n o , J . M. H o r o w i t z , a n d J . M. R . P a r r o n d o , P R X ( 2 0 1 8 ) ; ] J . M. H o r o w i t z a n d J . M. R . P a r r o n d o , N J P ( 2 0 1 3 ) ; J . M. H o r o w i t z , P R E ( 2 0 1 2 )

  12. * Outline O u t l i n e : ● I n t r o d u c t i o n ● F r o m s t o c h a s t i c t o q u a n t u m t h e r mo d y n a mi c s ● S u p e r p o s i t i o n a n d c o h e r e n c e ● T h e r mo d y n a mi c s a n d fm u c t u a t i o n s f o r q u a n t u m s y s t e ms ● Q u a n t u m t r a j e c t o r i e s ● E n t r o p y p r o d u c t i o n a n d fm u c t u a t i o n t h e o r e ms ● Q u a n t u m Ma r t i n g a l e T h e o r y ● C l a s s i c a l - Q u a n t u m s p l i t o f e n t r o p y p r o d u c t i o n ● S t o p p i n g - t i me s a n d fj n i t e - t i me i n fj mu m ● Ma i n c o n c l u s i o n s

  13. * Quantum Martingale Theory Does classical martingale theory for entropy production apply to quantum thermo? ● for average conditioned on trajectory at past times [ I . N e r i , É . R o l d á n , a n d F . J ü l i c h e r , P R X ( 2 0 1 7 ) ] Quantum generalization becomes problematic ! ● Entropy production needs ● measurements on the system. Sometimes it is not well defined at ● intermediate times How to make meaningful conditions on ● past times ? in a superposition of eigenstates (of the steady state) [EP would depend on an eventual measurement] in a eigenstate (microstate) of the steady state [well defined without measurements] Classical Markov

  14. * Classical-Quantum split Quantum fluctuations spoil the Martingale property! ● for The extra term measures the entropic value of the uncertainty in : ● which fulfills: is the “average probability” when measuring Decomposition of the stochastic EP: ● “classicalization” of EP and ● is an exponential martingale Both terms fulfill fluctuation theorems: ● time

  15. * Stopping-time fluctuations and Extreme-value statistics Stopping-time fluctuation theorem ● either positive or negative stochastic stopping-time Example: 2-level system with orthogonal jumps Minimum between first-passage time with 1 or 2 thresholds and a fixed maximum t Finite-time infimum inequality: ● Modified infimum law: max and min eigenvalues of the steady state

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend