pulsed em fields their modeling and potentialities by
play

Pulsed EM Fields: Their Modeling and Potentialities by Martin - PowerPoint PPT Presentation

Pulsed EM Fields: Their Modeling and Potentialities by Martin Stumpf B rno U niversity of T echnology SIX Research Centre a 3082/12 616 00 Brno The Czech Republic Technick T : +420-5-4114-6539 E : stumpf@feec.vutbr.cz


  1. Pulsed EM Fields: Their Modeling and Potentialities by Martin ˇ Stumpf B rno U niversity of T echnology SIX Research Centre a 3082/12 • 616 00 Brno • The Czech Republic Technick´ • T : +420-5-4114-6539 E : stumpf@feec.vutbr.cz Presentation given at: Hamburg, Germany, 9 January 2015 01 Title and affiliation � 2014 Brno University of Technology c SIX Research Centre

  2. Presentation motivation • ∀ PHYSICAL PHENOMENA ∈ SPACE – TIME • R 3 × R + CAUSALITY Im( s ) CAUSAL f ( t ) FREQUENCY � DOMAIN ANALYTIC ˆ f ( s ) Re( s ) = 0 Re( s ) × 0 s + 0 • THE CONCEPT OF ’FREQUENCY’ = MATHEMATICAL ARTIFACT • ’FREQUENCY DOMAIN’ does away with CAUSALITY UNIQUENESS 02 Motivation � 2014 Brno University of Technology c SIX Research Centre

  3. Presentation overview • Generalized-Ray Theory (GRT) and its extensions • EM Green’s functions in layered media • Applications to bounded domains amd inclusion of relaxation phenomena • Time-Domain RADAR Imaging • Time-Domain Modeling of P/G Structures • Analytical modeling of rectangular P/G structures • Time-Domain Contour Integral Method (TD-CIM) • EM radiation, (self-)reciprocity and mutual coupling • Conclusions 03 Outline � 2014 Brno University of Technology c SIX Research Centre

  4. GENERALIZED-RAY THEORY 04 Generalized-Ray Theory � 2014 Brno University of Technology c SIX Research Centre

  5. Conventions in notation • SUBSCRIPT NOTATION • Latin lower-case = { 1 , 2 , 3 } , Greek lower-case = { 1 , 2 } • position vector: x → x n (tensor of rank 1) • spatial derivative: ∂/∂x n → ∂ n (tensor of rank 1) • Kronecker symbol: δ m,n (symmetrical unit tensor of rank 2) • Levi-Civita symbol: e i,j,k (completely antisymmetrical unit tensor of rank 3) • SUMMATION CONVENTION • δ m,m = � 3 m =1 δ m,m = 3 • e k,l,m e k,l,m = � 3 � 3 � 3 m =1 e k,l,m e k,l,m = 6 k =1 l =1 • ∇ [ ∇ · v ] → ∂ i ∂ k v k = δ i,j ∂ j ∂ k v k • ∇ × [ ∇ × v ] → e i,j,k e k,l,m ∂ j ∂ l v m 05 GRT: Notation � 2014 Brno University of Technology c SIX Research Centre

  6. Problem definition • ND domains described via ǫ N = ǫ N ( x 3 ) and µ N = µ N ( x 3 ) , for N = { 1 , ..., ND } with c N = ( ǫ N µ N ) − 1 / 2 > 0 x 3 receiver { ǫ ND , µ ND } D ND ▽ x 3; ND • the configuration is linear, instantaneously reacting, { ǫ S +1 , µ S +1 } D S +1 x 3; S +1 { ǫ S , µ S } D S source time invariant, shift invariant in the horizontal direction × x 3; S { ǫ 2 , µ 2 } D 2 • the EM field is causally related to the action of x 3;2 { ǫ 1 , µ 1 } D 1 an impulsive source placed at x 3 = x 3; S • a source starts to act at t = 0 and prior to this instant the EM fields vanish throughout the configuration • an arbitrary probe position • no relaxation mechanism incorporated 06 GRT: Problem description � 2014 Brno University of Technology c SIX Research Centre

  7. EM field decomposition † for k = { 1 , 2 , 3 } and p = { 1 , 2 , 3 } : π = { 1 , 2 } − e k,m,p ∂ m H p + ǫ∂ t E k = − J k p = 3 ρ = { 1 , 2 } e j,n,r ∂ n E r + µ∂ t H j = − K j for j = { 1 , 2 , 3 } and r = { 1 , 2 , 3 } : r = 3 − e k,µ,π ∂ µ H π − e k,µ, 3 ∂ µ H 3 − e k, 3 ,π ∂ 3 H π + ǫ∂ t E k = − J k DECOMPOSED EM FIELD EQUATIONS e j,ν,ρ ∂ ν E ρ + e j,ν, 3 ∂ ν E 3 + e j, 3 ,ρ ∂ 3 E ρ + µ∂ t H j = − K j • for a point source: { J k , K j } ( x , t ) = { j k , k j } ( t ) δ ( x 1 , x 2 , x 3 − x 3; S ) ⇒ lim x 3 ↓ x 3; N H π − lim x 3 ↑ x 3; N H π = e 3 ,π,κ j κ ( t ) δ ( x 1 , x 2 ) δ N,S INTERFACE lim x 3 ↓ x 3; N E ρ − lim x 3 ↑ x 3; N E ρ = e 3 ,ι,ρ k ι ( t ) δ ( x 1 , x 2 ) δ N,S CONDITIONS † M. ˇ Stumpf, A. T. de Hoop and G. A. E. Vandenbosch, “Generalized ray theory for time-domain electromagnetic fields in horizontally layered media,” IEEE Trans. AP , vol. 61, no. 5, pp. 2676–2687, May 2013. 07 GRT: EM field decomposition � 2014 Brno University of Technology c SIX Research Centre

  8. Transform-domain field representation † LAPLACE � ∞ ˆ E k ( x , s ) = t =0 exp( − st ) E k ( x , t )d t TRANSFORMATION • Lerch’s sequence: { s ∈ R : s = s 0 + nh, s 0 > 0 , h > 0 , n = 0 , 1 , 2 , ... } ⇒ transformation property: ∂ t → s (for zero initial conditions) WAVE-SLOWNESS FIELD REPRESENTATION � s � 2 � ˆ α 2 ∈ R exp( − i sα µ x µ ) ˜ � E k ( x , s ) = α 1 ∈ R d α 1 E k ( α 1 , α 2 , x 3 , s )d α 2 2 π ⇒ transformation property: ∂ ν → ˜ ∂ ν = − i sα ν † M. ˇ Stumpf, A. T. de Hoop and G. A. E. Vandenbosch, “Generalized ray theory for time-domain electromagnetic fields in horizontally layered media,” IEEE Trans. AP , vol. 61, no. 5, pp. 2676–2687, May 2013. 08 GRT: Transform domains � 2014 Brno University of Technology c SIX Research Centre

  9. Source-type field representations † E π − s 2 γ 2 ˜ 3 ˜ E π = sµ ˜ J π − ˜ ∂ π ˜ ∂ ν ˜ J ν /sǫ − ˜ ∂ π ∂ 3 ˜ J 3 /sǫ − e π,ρ, 3 ∂ 3 ˜ K ρ + e π,ρ, 3 ˜ ∂ ρ ˜ ∂ 2 K 3 H ρ − s 2 γ 2 ˜ K ρ − ˜ ∂ ρ ˜ K π /sµ − ˜ J κ − e ρ,κ, 3 ˜ 3 ˜ H ρ = sǫ ˜ ∂ π ˜ ∂ ρ ∂ 3 ˜ K 3 /sµ + e ρ,κ, 3 ∂ 3 ˜ ∂ κ ˜ ∂ 2 J 3 + TRANSFORM-DOMAIN INTERFACE CONDITIONS AND LINEARITY • transform-domain representations for tangential EM field components VERTICAL ELECTRIC E π ( α 1 , α 2 , x 3 , s ) = ˜ ˜ j 3 ( s ) ˜ ∂ π ∂ 3 ˆ G J ⊥ /sǫ DIPOLE H ρ ( α 1 , α 2 , x 3 , s ) = e ρ,π, 3 ˜ ˜ j 3 ( s ) ˜ ∂ π ˆ G J ⊥ HORIZONTAL ELECTRIC G J � + ˜ DIPOLE E π ( α 1 , α 2 , x 3 , s ) = − sµ ˆ ˜ j π ( s ) ˜ ∂ π ˜ ∂ ν ˆ j ν ( s ) ˜ G Q � /sǫ � ˜ G J � − ˜ G Q � − ˜ ˜ j π ( s ) ∂ 3 ˜ j ν ( s ) e ρ, 3 ,π ˜ H ρ ( α 1 , α 2 , x 3 , s ) = e ρ, 3 ,π ˆ ∂ ν ˆ G J � � � s 2 γ 2 ∂ π ∂ 3 † M. ˇ Stumpf, A. T. de Hoop and G. A. E. Vandenbosch, “Generalized ray theory for time-domain electromagnetic fields in horizontally layered media,” IEEE Trans. AP , vol. 61, no. 5, pp. 2676–2687, May 2013. 09 GRT: Source-type field representations � 2014 Brno University of Technology c SIX Research Centre

  10. Generalized-ray EM field expansion (1) † GENERAL ˜ N exp[ − sγ N ( x 3 − x 3; N )] + W − G = W + N exp[ − sγ N ( x 3; N +1 − x 3 )] SOLUTION • { W + N , W − N } are transform-domain upgoing/downgoing wave amplitudes N = ¯ N + ¯ S + − N W − W + S ++ N W + N − 1 + X + SCATTERING N DESCRIPTION N − 1 = ¯ N + ¯ W − S −− N W − S − + N W + N − 1 + X − N − 1 W + D N W − { ¯ N , ¯ S + − S −− N } = { S + − N , S −− N N N } exp( − sγ N d N ) x 3; N { ¯ N , ¯ S − + N , S − + S ++ N } = { S ++ N } exp( − sγ N − 1 d N − 1 ) W + D N − 1 W − N − 1 N − 1 † M. ˇ Stumpf, A. T. de Hoop and G. A. E. Vandenbosch, “Generalized ray theory for time-domain electromagnetic fields in horizontally layered media,” IEEE Trans. AP , vol. 61, no. 5, pp. 2676–2687, May 2013. 10 GRT: Generalized-ray EM field expansion � 2014 Brno University of Technology c SIX Research Centre

  11. Generalized-ray EM field expansion (2) = ¯ + ¯ S A + − W A − W A + S A ++ W A + N − 1 + X A + HORIZONTAL-SOURCE N N N N N COUPLING N − 1 = ¯ + ¯ W A − S A −− W A − S A − + W A + N − 1 + X A − N − 1 N N N = ¯ + ¯ N − 1 + ¯ + ¯ P B + − W B − C B + − W A − W B + P B ++ W B + C B ++ W A + N − 1 + X B + N N N N N N N N N − 1 = ¯ + ¯ N − 1 + ¯ + ¯ W B − P B −− W B − P B − + W B + C B −− W A − C B − + W A + N − 1 + X B − N − 1 N N N N N N GENERALIZED-RAY x 3;4 (NEUMANN) EXPANSION X + 3 m =0 S m · X + S M +1 · W W = � M × x 3;3 X − 2 ⇒ CAGNIARD-deHOOP x 3;2 PEC INVERSION 11 GRT: Generalized-ray EM field expansion � 2014 Brno University of Technology c SIX Research Centre

  12. Generalized-ray constituent (1) � ∞ � ∞ � s � 2 ˆ GENERIC FORM ˆ R ( x , s ) = Q ( s ) d α 1 Π( α 1 , α 2 ) 2 π α 1 = −∞ α 2 = −∞ � � N �� � × exp − s i α 1 x 1 + i α 2 x 2 + γ K ( α 1 , α 2 ) Z K d α 2 K =1 R ( x , s ) = s 2 ˆ • mapping M : { α 1 , α 2 } → { p, q } with ˆ Q ( s ) ˆ K ( x , s ) � ∞ � i ∞ 1 ˆ ¯ K ( x , s ) = d q Π( p, q ) 4 π 2 i q = −∞ p = − i ∞ PROPAGATION � � �� N � × exp − s FACTOR pr + γ K ( p, q ) Z K ¯ d p K =1 12 GRT: Generalized-ray constituent (1) � 2014 Brno University of Technology c SIX Research Centre

  13. Generalized-ray constituent (2) CAGNIARD-deHOOP PATH pr + � N for { τ ∈ R ; τ > 0 } K =1 ¯ γ K ( p, q ) Z K = τ Im( p ) C BW p -plane C HW Re( p ) 0 HEAD-WAVE PART BODY-WAVE PART 13 GRT: Generalized-ray constituent (2) � 2014 Brno University of Technology c SIX Research Centre

  14. Body-wave part s -DOMAIN PROPAGATOR � Q BW ( τ ) � ∞ � ∂p BW exp( − sτ )d τ 1 � �� K BW ( x , s ) = p BW , q p BW , q ˆ ¯ � � Im Π d q π 2 ∂τ τ = T BW (0) q =0 ⇓ LERCH’S UNIQUENESS THEOREM ⇓ t -DOMAIN PROPAGATOR t -DOMAIN CONSTITUENT � Q BW ( t ) if t < T BW (0) Π ∂p BW � � � 0 K BW ( x , t ) = 1 ⇒ R BW ( x , t ) = ¯ Im d q ( t ) ∗ K BW ( x , t ) if t > T BW (0) ∂ 2 π 2 ∂t t Q ( t ) q =0 14 GRT: Generalized-ray constituent (3) � 2014 Brno University of Technology c SIX Research Centre

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend