properties of many body localized phase
play

Properties of many-body localized phase Maksym Serbyn UC Berkeley - PowerPoint PPT Presentation

Properties of many-body localized phase Maksym Serbyn UC Berkeley IST Austria QMATH13 Atlanta, 2016 Motivation: MBL as a new universality class Classical systems: Ergodic Integrable ergodicity from


  1. Properties of many-body localized phase Maksym Serbyn UC Berkeley 
 → IST Austria QMATH13 Atlanta, 2016

  2. 
 
 
 
 Motivation: MBL as a new universality class • Classical systems: 
 Ergodic 
 Integrable ergodicity from chaos stable to weak perturbations [Kolmogorov-Arnold-Moser theorem] • Quantum systems: Thermalizing 
 Many-body localized emergent integrability 
 ETH mechanism stable to weak perturbations < O > E

  3. 
 
 
 
 Thermalizing systems: ETH • Thermalization: 
 e -iHt subsystem in thermal state 
 time • Mechanism: 
 [Deutsch’91] [Srednicki’94] 
 Eigenstate Thermalization Hypothesis : 
 [Rigol,Dunjko,Olshanii’08] property of eigenstates 
 thermal density matrix 
 | λ >= ρ λ = e -H/T 
 • Works in many cases 
 Many open questions: timescale, other mechanisms?..

  4. Many-body localized phase t ⚡ V • MBL = localized phase with interactions E i • Perturbative arguments for existence of MBL phase: 
 [Basko,Aleiner,Altshuler’05][Gornyi,Polyakov,Mirlin’05] 
 • Numerical evidence for MBL: 
 [Oganesyan,Huse’08] [Pal,Huse’10] [Znidaric,Prosen’08] 
 [Monthus, Garel’10][Bardarson,Pollman,Moore’12] 
 [MS, Papic, Abanin’13,’14] [Kjall et al’14] Non-thermalizing MBL phase exists! Properties of MBL phase? Why thermalization breaks down?

  5. 
 
 
 
 
 Universal Hamiltonian of MBL phase • If model is in MBL phase, rotate basis 
 J ⟂ ⚡ J z h i X S i · ~ ~ S i +1 + h i S z H = i i • New spins: τ i = U † S i U are quasi-local; form complete set 
 H ij ∝ exp( − | i − j | / ξ ) τ jz τ iz S i S j • Consequences: no transport, ETH breakdown, 
 universal dynamics [MS, Papic, Abanin, PRL’13] 
 [Huse, Oganesyan, PRB’14] [Imbrie, arXiv:1403.7837]

  6. ͠ 
 
 
 
 
 Properties of MBL phase • Transport: 
 Diffusion 
 ?? Entanglement light cone • Matrix elements: 
 • Eigenstate properties: 
 Thermalizing phase MBL phase disorder W

  7. 
 
 Dynamics in MBL phase H ij ∝ Je − | i − j | / ξ time • Dephasing dynamics + ) ( + ) + ) ( ( + ) ( ( + ) • Phases randomize 
 x ( t ) = ξ log( Jt ) on distance x ( t ) : 
 tH ij = tJ exp( − x/ ξ ) ∼ 1 ( + ) ( + ) ( + ) ( + ) ( + ) distance • Explains logarithmic growth of entanglement [MS, Papic, Abanin, PRL’13] • Dynamics of local observables? 


  8. Local observables in a quench ⚡ e -iHt measure < S x > or !< S z > • < τ z ( t ) > = const x ( t ) ∝ ln( t ) • < τ x ( t ) > = = [sum of N(t) = 2 x(t) oscillating terms] ρ ↑↓ ( t ) 1 1 • Decay of oscillations of < τ x ( t ) > : | h τ x k ( t ) i | / = p ( tJ ) a N ( t ) � ⇠ 1 � h ˆ � � O ( t ) i � h O ( 1 ) i S x t a W =5 memory of 
 initial state S z [MS, Papic, Abanin, PRB’14] t

  9. 
 
 
 
 ͠ Properties of MBL phase • Transport: 
 No transport 
 Diffusion 
 Log-growth of entanglement Entanglement lightcone • Matrix elements 
 ?? ETH ansatz, typicality Thermalizing phase MBL phase disorder W

  10. 
 
 Structure of many-body wave function • Single-particle localization: 
 𝜔 (x) • Many-body wave function: 
 | 𝜔 >= P σ = " , # ψ σ 1 σ 2 ... | σ 1 σ 2 . . . i Problems : basis-dependent, 
 not related to observables • Alternative: “wave function” created by V 
 V V nm H | n i = E n | n i ψ n ( m ) = h m | V | n i

  11. ͠ Matrix elements of local operators local 
 perturbation V R ETH ansatz 
 Local integrals of motion 
 S z = τ { α } ˆ B { α } [ τ z ] h i | S z | j i = e � S ( E,R ) / 2 f ( E i , E j ) R ij X ˆ { α } h i | S z | j i [Srednicki’99] narrow distribution: broad distribution: h i | S z | j i ⇠ 1 / h i | S z | j i ⇠ exp( � κ 0 R ) p 2 R Thermalizing phase disorder W MBL phase

  12. 
 
 
 
 
 
 
 
 
 
 
 
 Fractal analysis of matrix elements h | V nm | 2 q i / 1 • Fractal dimensions from scaling of 
 X P q = D τ q m τ q τ q = q − 1 Ergodic phase τ q>q c = 0 q MBL phase • “Frozen” fractal spectrum in MBL: 
 h ln V nm i / � κ L

  13. 
 
 
 
 
 
 
 
 
 Energy structure of matrix elements • Spectral function 
 f 2 ( ω ) = e S ( E ) h | V nm | 2 δ ( ω � ( E m � E n )) i Z 1 • Related to dynamics: 
 d ω e � i ω t f 2 ( ω ) h α | V ( t ) V (0) | α i c ⇡ �1 • Thermalizing phase: 
 ln f 2 ( ω ) 1 h α | V ( t ) V (0) | α i c / t 1 � φ 1 1 ω φ E Th ∝ L 1 / (1 − φ ) ln ω more details: E T h [arXiv:1610.02389]

  14. ͠ Numerical results for spectral function: (c) (a) ln f 2 ( ω ) ln f 2 ( ω ) ω / ∆ ω / ∆ • MBL phase: Thouless energy < level spacing • Breakdown of typicality: log h V nm i 6 = h log V nm i Thermalizing phase disorder W MBL phase

  15. ͠ 
 
 
 
 Properties of MBL phase • Transport: 
 No transport 
 Diffusion 
 Log-growth of entanglement Entanglement lightcone • Matrix elements: 
 broad distribution ETH ansatz, typicality strong fractality • Eigenstate properties: 
 volume-law entanglement ?? “flat” entanglement spectrum Thermalizing phase MBL phase disorder W

  16. 
 
 Beyond entanglement • Gapped ground states: area-law 
 S ent ( L ) ~ const in 1d 
 E • Excited eigenstates: volume-law 
 S ent ( L ) ~ L in 1d 
 Ground state • MBL: area-law entanglement 
 Q: Difference with gapped ground states? • Entanglement spectrum { 𝜇 i } S ent = − P i λ i log λ i • “Flat” in ergodic states: 
 ln λ k [Marchenko&Pastur'67] 
 [Yang,Chamon,Hamma&Muciolo’15]

  17. 
 
 
 
 
 Entanglement spectrum: probes boundary • Quantum Hall wave function: 
 k y 
 k y to organize ES [Li & Haldane] k x • MBL phase: conserved quantities label ES 
 #" | "#i | #"i +… | """"i = "" | ""i | ""i "" | "#i | ""i + e − 2 κ + e − κ c 0 r =2 r =1 e − 4 κ ## | ##i | ##i + + ….. r =4 • Coefficients decay as ↑ ... ↑ | ∝ e − κ r | C ↑ ... ↑↓↓↑↑↑↓ | {z } r

  18. 
 
 
 
 Power-law entanglement spectrum • Hierarchical structure of 
 r =0 | ψ ( r ) ih ψ ( r ) | ρ L = P L h ψ ( r ) | ψ ( r ) i / e � 2 κ r but non-orthogonal λ (0) • Orthogonalize perturbatively 
 λ (1) λ (1) λ ( r ) ∝ e − 4 κ r λ (2) λ (2) multiplicity is 2 r λ (2) λ (2) • Power-law entanglement spectrum 
 λ k ∝ 1 γ ≈ 4 κ k γ ln 2

  19. 
 
 Numerics for XXZ spin chain • Numerical studies for XXZ spin chain, J ⟂ = J z =1 
 X i + J ⊥ S + ( h i S z i S − H = i +1 + h.c. ) i X J z S z i S z + i +1 i • Power law entanglement spectrum: disorder W = 5 λ k ∝ 1 k γ more details in: [arXiv:1605.05737]

  20. Estimates for the bond dimension • Large 𝛿 → MPS error can be small ∝ 1 / χ γ − 1 • Implementation of DMRG for highly excited states: disorder W = 5 χ more details: 
 also: [Yu et al arXiv:1509.01244] [Lim&Sheng arXiv:1510.08145] 
 [arXiv:1605.05737] [Pollmann et al arXiv:1509.00483] [Kennes&Karrasch arXiv:1511.02205]

  21. ͠ 
 
 
 
 Properties of MBL phase • Transport: 
 No transport 
 Diffusion 
 Log-growth of entanglement Entanglement lightcone • Matrix elements: 
 broad distribution ETH ansatz, typicality strong fractality • Eigenstate properties: 
 volume-law entanglement area-law entanglement “flat” entanglement spectrum power-law entanglement spectrum Thermalizing phase MBL phase disorder W ??

  22. 
 
 
 
 
 Summary and outlook • MBL: new universality class of non-thermalizing systems • Properties: dynamics, matrix elements, entanglement 
 � ⇠ 1 � h ˆ � � O ( t ) i � h O ( 1 ) i t a h i | S z | j i ⇠ exp( � κ 0 R ) PRL 110, 260601 (2013) PRL 111, 127201 (2013) PRL 113, 147204 (2014) PRB 90, 174302 (2014) PRX 5, 041047 (2015) PRB 93, 041424 (2016) 
 arXiv:1605.05737 arXiv:1610.02389 • Questions: MBL in d>1, symmetries, MPS/MPO description breakdown of MBL, mobility edge

  23. Acknowledgments Alexios Michailidis 
 Zlatko Papic 
 Dima Abanin 
 Joel Moore 
 Nottingham Leeds Univ. of Geneva UC Berkeley

  24. 
 
 
 
 
 Summary and outlook • MBL: new universality class of non-thermalizing systems • Properties: dynamics, matrix elements, entanglement 
 � ⇠ 1 � h ˆ � � O ( t ) i � h O ( 1 ) i t a PRL 110, 260601 (2013) h i | S z | j i ⇠ exp( � κ 0 R ) PRL 111, 127201 (2013) PRL 113, 147204 (2014) PRB 90, 174302 (2014) PRX 5, 041047 (2015) PRB 93, 041424 (2016) 
 arXiv:1605.05737 arXiv:1610.02389 • Questions: MBL in d>1, symmetries, MPS/MPO description breakdown of MBL, mobility edge

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend