progress issues in strangeness np
play

Progress & issues in Strangeness NP Avraham Gal, Hebrew - PowerPoint PPT Presentation

Progress & issues in Strangeness NP Avraham Gal, Hebrew University, Jerusalem dynamics of hypernuclei ( A S = 1: Z ) (i) few-body & (ii) neutron-rich systems (iii) and other hyperons in neutron stars?


  1. Progress & issues in Strangeness NP Avraham Gal, Hebrew University, Jerusalem dynamics of Λ hypernuclei ( A • S = − 1: Λ Z ) (i) Λ few-body & (ii) neutron-rich systems (iii) Λ and other hyperons in neutron stars? • ΛΛ hypernuclei: long-lived H dibaryon? • Hyperons ( Λ , Σ , Ξ ) in nuclear matter |S| → ∞ : strange hadronic matter? K − quasibound states? • Kaons in nuclei: Θ + (1530) traces in K + nuclear dynamics? • SNP Special Issue: Nucl. Phys. A 881 (2012) Proc. HYP 2012: Nucl. Phys. A 914 (2013) 1

  2. Λ hypernuclear dynamics 2

  3. Studies of Λ hypernuclei • ( K − , π − ) – emulsions, CERN, BNL, KEK, LNF, J-PARC • ( π + , K + ) – BNL, KEK, J-PARC • ( π + , K + γ ) – KEK & ( K − , π − γ ) – BNL, J-PARC with Hyperball-J • ( e, e ′ K + ) – JLab, Hall A and Hall C; now also at MAMI stop , π + • DCX: ( π − , K + ) – KEK, J-PARC & ( K − prod π − decay ) – LNF Scheduled experiments at J-PARC using meson beams: • E13: γ -ray spectroscopy of Λ hypernuclei • E10: DCX studies of neutron-rich A Λ Z ( 6 Li , 9 Be & 10 B targets) • E18: 12 Λ C weak decays • E22: weak interactions in 4 Λ H − 4 Λ He Studies of exotica & light hypernuclei lifetimes by heavy ions: • In GSI, the HypHI Experiment, 6 Li on C at 2 A GeV • In LHC, the ALICE Collaboration, Pb-Pb at √ s NN =2.76 TeV 3

  4. Observation of Λ single-particle states KEK E369 89 Y( π + ,K + ) 180 f Λ 160 ∆ E=1.63 MeV FWHM 140 V e d Λ 120 M 5 100 2 . 0 80 / s t n p Λ 60 u o C 40 s Λ s Λ 20 0 -10 -5 0 5 10 15 20 25 30 Excitation Energy (MeV) H. Hotchi et al., Phys. Rev. C 64 (2001) 044302 B Λ = 23 . 11 ± 0 . 10 MeV T. Motoba, D.E. Lanskoy, D.J. Millener, Y. Yamamoto, NPA 804 (2008) 99: negligible Λ spin-orbit splittings, 0.2 MeV for 1 f Λ 4

  5. Update: Millener, Dover, Gal PRC 38, 2700 (1988) Λ Single Particle States (pi,K) 30 208 (e,e’K) 139 Emulsion Binding Energy (MeV) 89 (K,pi) 51 4032 20 28 s Λ 16 131211 10 10 d Λ 8 7 f Λ p Λ g Λ 0 0 0.05 0.1 0.15 0.2 0.25 A − 2 / 3 Woods-Saxon V = 30 . 05 MeV, r = 1 . 165 fm, a = 0 . 6 fm Textbook example of shell model at work. SHF studies suggest Λ NN repulsion. 5

  6. Hyperon puzzle: QMC calculations 60.0 exp 50.0 N N + NN (I) 40.0 N + NN (II) B [MeV] 30.0 20.0 10.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 A -2/3 PRL 114 (2015) 092301 Lonardoni et al, PRC 89 (2014) 014314 Λ NN effect on neutron stars Λ NN effect on B Λ (g.s.) • Adding Λ NN (and YY) stiffens EOS of neutron stars. • Σ & Ξ hyperons need to be considered too. • YY add 0.3M ⊙ to M max (Rijken-Schulze 2016). 6

  7. 6 Li( K − stop , π + ) 6 6 Λ H → 6 He + π − FINUDA: p π + vs. p π − in Λ H, T ( π + ) + T ( π − ) =202–204 MeV (l.h.s.) 200–206 MeV (r.h.s.) Red rectangles: p π + =250–255, p π − =130–137 MeV/c. The 3 events in red are stable against T ( π + ) + T ( π − ) cuts. 6 Λ H not confirmed in ( π − , K + ) by J-PARC E10. 7

  8. FINUDA+Gal (2012) [PRL 108, 042501; NPA 881, 269] Λ H candidate events out of 2.7 x 10 7 K − • Three 6 stop . • B Λ ( 6 Λ H) constrains Λ N ↔ Σ N effects in neutron-rich A Λ Z . 8

  9. Room for hypernuclear spectroscopy 12 C 0.9 g/cm 2 MeV 12 C E140a� ( π + ,K + ) Λ (arbitrary) nb ⋅ GeV 100� 4 2 sr 80� V E369 e exc M dE 5 60� 2 2 . 0 e dE / s σ t n d 40� K u Ω o c d e Ω 20� d 0 0 10 20 0� 170� 175� 180� 185� 190� 195� 200� 205� Excitation Energy (MeV) M HY - M A (MeV) H. Hotchi et al., PRC 64 (2001) 044302 M. Iodice et al., PRL 99 (2007) 052501 12 Λ B in ( e, e ′ K + ), Jlab Hall A 1 s Λ − 1 p Λ intermediate structure energy resolution 1.6 MeV → 0.6 MeV [PRC 90 (2014) 034320] 9

  10. Hypernuclear production in ( K − stop , π − ) , PLB 698 (2011) 219 & 226 2400 Events/0.5 MeV Events/0.5 MeV 7 Li Data Data 2200 7000 Knp → Σ p Knp p → Σ 2000 Kn → Λ π Kn → Λ π 6000 1800 Kp → Σ π K → µ ν 1600 K → µ ν 5000 Hypernuclei 1400 Hypernuclei Fit 4000 Fit 1200 1000 3000 800 2000 600 400 χ 2 /NDF: 0.99 1000 200 0 0 40 20 0 -20 -40 -60 -80 50 40 30 20 10 0 B (MeV) B (MeV) Λ Λ Production spectrum on 7 Li Three 7 Λ Li levels, δB Λ =0.4 MeV Formation rate 1 · 10 − 3 /K − FINUDA, DA Φ NE, Frascati stop A=7–16 data also indicate DEEP K − nuclear potential. 10

  11. 1.483 1 + 1 + 3 0 + 2.313 3.948 1/2 + T=1 3/2 + 6.176 0 N 14 3/2 + ,1/2 + 1/2 + + 1 - 1 + E2 5/2 + 0 11 B B 10 1/2 + 0 0 7/2 + - 3/2 2 - B 9 < 0.1 0 + M1 0.718 6.786 M1 2 - 1 - 2 + p 1 - 0.161 0 1.987 M1 Level energies in MeV 11 C 6.042 4.804 0.263 2.832 2.268 - 0 T=1 T=1 4.229 4.710 0 + p 3/2 M1 2.000 0 - 12 C 2 - - 1/2 1 - 3/2 3/2 + 6.562 3.068 0 + 5/2 + 3/2 + 9 Be Be 8 0 0 3.563 1/2 + T=1 M1 M1 3.88 E2 3.040 2 + 1/2 + 7/2 + E2 0 2.186 Li 6 + 1 5/2 + M1 + 3 0 0.692 2.050 3/2 + 1/2 + E2 2 + 0.026 M1 10.98 10.83 M1 0 16 1 - 1 - E2 0 - 1/2 - O 15 3/2 - 2 - 0 4.439 3.025 0 12 0 + 3/2 - 1/2 - 2012 13 C C 0 0 E1 E1 1/2 + 5/2 + 3/2 + 4.88 - 10 B Λ Λ 7 Li Λ Hypernuclear γ rays x Λ p1/2 x Λ p3/2 C Λ Λ 15 N Λ Λ O Λ Hypernuclear level schemes from γ -ray measurements (BNL, KEK) H. Tamura et al., Nucl. Phys. A 835 (2010) 3 [HYP09], updated at HYP12 Λ spin-orbit splitting: 150 keV in 13 Λ C & related 43 keV in 9 Λ Be 11

  12. p-shell Λ hypernuclei V Λ N = V 0 ( r )+ V σ ( r ) s N · s Λ + V LS ( r ) l N Λ · ( s Λ + s N )+ V ALS ( r ) l N Λ · ( s Λ − s N )+ V T ( r ) S 12 V Λ N = ¯ For p N s Y : V + ∆ s N · s Λ + S Λ l N · s Λ + S N l N · s N + T S 12 R.H Dalitz, A. Gal, Ann. Phys. 116 (1978) 167 D.J. Millener, A. Gal, C.B. Dover, R.H. Dalitz, PRC 31 (1985) 499 ¯ N Λ- N Λ V ∆ S Λ S N T from A = 7 − 9 ( − 1 . 32) 0.430 − 0 . 015 − 0 . 390 0.030 fit A = 11 − 16 ( − 1 . 32) 0.330 − 0 . 015 − 0 . 350 0.024 fit N Λ- N Σ 1.45 3.04 − 0 . 085 − 0 . 085 0.157 input (in MeV) D.J. Millener, Nucl. Phys. A 804 (2008) 84 12

  13. Doublet spacings in p-shell hypernuclei (in keV) D.J. Millener, NPA 881 (2012) 298 J π J π ∆ E th ∆ E exp ΛΣ ∆ S Λ S N T u l 7 3 / 2 + 1 / 2 + Λ Li 72 628 − 1 − 4 − 9 693 692 7 7 / 2 + 5 / 2 + Λ Li 74 557 − 32 − 8 − 71 494 471 8 Λ Li 2 − 1 − 151 396 − 14 − 16 − 24 450 (442) 9 3 / 2 + 5 / 2 + Λ Be − 8 − 14 37 0 28 44 43 11 7 / 2 + 5 / 2 + Λ B 56 339 − 37 − 10 − 80 267 264 11 3 / 2 + 1 / 2 + Λ B 61 424 − 3 − 44 − 10 475 505 12 Λ C 2 − 1 − 61 175 − 22 − 13 − 42 153 161 3 / 2 + 1 / 2 + 15 Λ N 65 451 − 2 − 16 − 10 507 481 2 2 16 Λ O 1 − 0 − − 33 − 123 − 20 1 188 23 26 16 1 − Λ O 2 − 92 207 − 21 1 − 41 248 224 2 ΛΣ coupling contributions normally are below 100 keV 13

  14. The lightest, s-shell, Λ hypernuclei A J π J π Λ Z T B Λ (MeV) E x (MeV) g . s . exc . 3 1 / 2 + Λ H 0 0.13(5) 4 Λ H– 4 0 + 1 + Λ He 1/2 2.04(4)–2.39(3) 1.09(2)–1.406(3) 5 1 / 2 + Λ He 0 3.12(2) • No Λ N and no Λ nn bound state are expected. • ∆ B Λ ( 4 Λ He– 4 Λ H)=0.35(5) MeV: very large CSB. Recent A = 3 , 4 few-body calculations • A. Nogga, NPA 914 (2013) 140 Faddeev & Faddeev-Yakubovsky (chiral LO & NLO). • E. Hiyama et al., PRC 89 (2014) 061302(R) Jacobi-coordinates Gaussian basis (Nijmegen soft-core). • R. Wirth et al., PRL 113 (2014) 192502. ab-initio Jacobi-NCSM (chiral LO). 14

  15. Λ H– 4 4 Λ He levels before and after J-PARC E13 exp. T. O. Yamamoto et al., J-PARC-E13, PRL 115 (2015) 222501 3 H + � 3 He + � 0 + 1 0.96 �} 0.04 + 1 4 He( K � � 1.24 �} 0.05 , ) � ( p =1.5 GeV/ ) c K M1 + 1/2 1 + 1 + 1.08 �} 0.02 0.95 0.04 0.98 0.03 M1 + 1/2 1.15 �} 0.04 1/2 + + 1/2 + 3 H 0 E � = 1.09 + 3 E � = 1 406 . 0 He 0.02 2.04 �} 0.04 3 H 0 002 . 3 He 4 0 002 . 2.39 �} 0.03 H 0 + [present] 4 He Λ 2.04 0.04 0 + Λ 4 H B Λ 2.39 0.03 4 He (MeV) B [MeV] MAMI’s new value B Λ ( 4 Λ H)=2.12 ± 0.01 ± 0.09 MeV, consistent with emulsion value, obtained by measuring decay π − in 4 Λ H → 4 He+ π − [PRL 114 (2015) 232501]. CSB is strongly spin dependent, dominantly in 0 + g . s . 350 ± 60 keV in 4 Λ H- 4 Λ He vs. ≈− 70 keV in 3 H- 3 He. 15

  16. Relating Λ - Σ 0 CSB mixing to ΛΣ SI coupling Σ 0 Λ Λ • δM V Λ N − Σ N N N Dalitz-von Hippel (1964): “applies to any isovector meson exchange, π , ρ ...” & also to χ EFT contact interactions. Applied systematically by A. Gal, PLB 744 (2015) 352 (also in p-shell) & D. Gazda, A. Gal, arXiv:1512.01049. 16

  17. A=4 CSB: D. Gazda, A. Gal, arXiv:1512.01049 B Λ (0 + ) ≈ cutoff-independent (dispersion ∼ 100 keV) B Λ (1 + ) is cutoff-dependent (dispersion ∼ 0.5 MeV) but ∆ B Λ (0 + 1 + ) cutoff – (in) dependent. 17

  18. D. Gazda, A. Gal, arXiv:1512.01049 EFT LO cutoff momentum ( Λ ) dependence of E x (0 + → 1 + ) hω =30,32 MeV. [exp: E x ( 4 at HO ¯ Λ He)=1.41 ± 0.02 MeV] CSB Λ - Σ 0 mixing is correlated with SI ΛΣ coupling. Λ =600 MeV: ∆ E x =0.33 ± 0.03 MeV [exp: 0.32 ± 0.02 MeV] 18

  19. ΛΛ hypernuclei 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend