giant resonances in the skyrme hartree fock theory
play

Giant resonances in the Skyrme-Hartree-Fock theory P .G. Reinhard - PowerPoint PPT Presentation

Giant resonances in the Skyrme-Hartree-Fock theory P .G. Reinhard Institut fr Theoretische Physik II Universitt Erlangen-Nrnberg COMEX05, Krakow 2015 P .G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the


  1. Giant resonances in the Skyrme-Hartree-Fock theory P .–G. Reinhard Institut für Theoretische Physik II Universität Erlangen-Nürnberg COMEX05, Krakow 2015 P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 1 / 36

  2. Acknowledgements Collaborators: W. Nazarewicz, B. Schütrumpf MSU East Lansing J. Erler, P . Klüpfel formerly Univ. Erlangen J. Dobaczewski York (UK), Jyväskyla J. A. Maruhn Frankfurt P . Stevenson Surrey V. Nesterenko, W. Kleinig Dubna J. Speth, S. Krewald Jülich N. Lyutorivich, V. Tselyaev St. Petersburg Support : BMBF contract 05P12RFFTG, DFG Re-322/12-1 P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 2 / 36

  3. Outline Formal framework 1 The Skyrme energy-density functional Observables Optimization of model parameters by least-squares fits Results 2 RPA: convergence and 2ph effects Giant resonances and nuclear matter parameters (NMP) GDR – trends with mass number Isovector dipole strength at low E Conclusions 3 P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 3 / 36

  4. Formal framework P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 4 / 36

  5. The Skyrme energy-density functional (here only time even densities) � d 3 r E Skyrme ( ρ, τ, J ) E tot = ✻ ρ ( r ) = � α v 2 α | ϕ α | 2 density ρ 2 ρ 2 1 2 B ′ 1 2 B 0 + ˜ 0 τ ( r ) = � α v 2 α |∇ ϕ α | 2 kinetic density 2 B 3 ρ 2 + α 1 1 2 B ′ ρ 2 ρ α + + ˜ J ( r ) = − i � α v 2 3 α ϕ † spin-orbit dens. α ∇× σϕ α B ′ + B 1 ρτ + ρ ˜ ˜ τ 1 1 2 B 2 ( ∇ ρ ) 2 1 2 B ′ ρ ) 2 + + 2 ( ∇ ˜ ρ ∇ ˜ 1 1 2 B ′ + 2 B 4 ρ ∇ J + ˜ J total & difference ρ = ρ n + ρ p , ˜ ρ = ρ n − ρ p 4 � �� � � �� � isoscalar isovector isoscalar isovector P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 5 / 36

  6. The Skyrme energy-density functional (here only time even densities) � � d 3 r E pair ( χ, ρ ) + E Coul − E corr ✛ d 3 r E Skyrme ( ρ, τ, J ) + E tot = E kin + ✻ ✻ ✻ correlations from ✻ low energy modes: p 2 | ϕ α ) ( ϕ α | ˆ � c.m., rotation, vibrat. 2 m N α Coulomb en. (exchange = Slater appr.) kinetic energy � � � � pairing functional ρ V pair χ 2 p + V pair χ 2 1 − only surface effects p n n ρ pair to define open shell nuclei ρ ( r ) = � α v 2 α | ϕ α | 2 density ρ 2 ρ 2 1 2 B ′ 1 2 B 0 + ˜ 0 τ ( r ) = � α v 2 α |∇ ϕ α | 2 kinetic density 1 2 B 3 ρ 2 + α 1 2 B ′ ρ 2 ρ α + + ˜ J ( r ) = − i � α v 2 3 α ϕ † spin-orbit dens. α ∇× σϕ α B ′ + B 1 ρτ + ρ ˜ ˜ τ 1 1 2 B 2 ( ∇ ρ ) 2 2 B ′ 1 ρ ) 2 + + 2 ( ∇ ˜ ρ ∇ ˜ 1 2 B ′ 1 + 2 B 4 ρ ∇ J + ˜ J total & difference ρ = ρ n + ρ p , ˜ ρ = ρ n − ρ p 4 � �� � � �� � isoscalar isovector isoscalar isovector P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 5 / 36

  7. The Skyrme energy-density functional (here only time even densities) � � d 3 r E pair ( χ, ρ ) + E Coul − E corr ✛ d 3 r E Skyrme ( ρ, τ, J ) + E tot = E kin + ✻ ✻ ✻ correlations from ✻ low energy modes: p 2 | ϕ α ) ( ϕ α | ˆ � c.m., rotation, vibrat. 2 m N α Coulomb en. (exchange = Slater appr.) kinetic energy � � � � pairing functional ρ V pair χ 2 p + V pair χ 2 1 − only surface effects p n n ρ pair to define open shell nuclei ρ ( r ) = � α v 2 α | ϕ α | 2 density ρ 2 ρ 2 1 1 2 B ′ 2 B 0 + ˜ 0 τ ( r ) = � α v 2 α |∇ ϕ α | 2 kinetic density 2 B 3 ρ 2 + α 1 2 B ′ 1 ρ 2 ρ α + + ˜ J ( r ) = − i � α v 2 3 α ϕ † spin-orbit dens. α ∇× σϕ α B ′ + B 1 ρτ + ρ ˜ ˜ τ χ ( r ) = � α u α v α | ϕ α | 2 1 pair density 2 B 2 ( ∇ ρ ) 2 1 1 2 B ′ ρ ) 2 + + 2 ( ∇ ˜ pairing amplit. u α , v α ρ ∇ ˜ 1 2 B ′ 1 + 2 B 4 ρ ∇ J + ˜ J total & difference ρ = ρ n + ρ p , ˜ ρ = ρ n − ρ p 4 � �� � � �� � isoscalar isovector isoscalar isovector B 0 , B ′ 0 , B 1 , B ′ 1 , B 2 , B ′ 2 , B 3 , B ′ 4 , V pair , V pair B 4 , B ′ free parameters: 3 , α, , ρ pair p n � �� � ↔ nuclear matter parameters (NMP) P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 5 / 36

  8. Observables P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 6 / 36

  9. The nuclear matter parameters (NMP) given E / A ( ρ ) = energy per particle in symmetric nuclear matter ( ρ = total density) this allows to define basic properties at equilibrium: E / A eq binding energy per particle at equilibrium point ρ eq equilibrium density E K = 9 ρ 2 0 ∂ 2 incompressibility (isoscalar static response) ρ A m ∗ effective mass (isoscalar dynamic response) m J symmetry energy (isovector static response) L = 3 ρ 0 ∂ ρ a sym slope of symmetry energy m ∗ κ TRK TRK sum rule enhancement ↔ isovector m (dynamic response) 1 a surf surface energy a surf , sym surface symmetry energy these 9 NMP are equivalent to parameters of SHF functional (except l*s & pairing) P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 7 / 36

  10. Ground state properties in the pool of fit data adopted errors Fit Observables: O ∆ O from expected binding energy E B _ + 1MeV correlation effects + _ r.m.s. radius r 0.02 fm large span in mass nmber A sufficient isoscalar information diffraction radius R _ + 0.04 fm surface thickness σ _ + 0.04 fm 82 l*s in doubly magic pairing (even − odd stagg.) "long" chains in proton number Z N − Z direction nonetheless: ↔ only weak ↔ isovector 50 information semi − magic nuclei: spherical 28 small correlations ↔ smallest correlation effects 20 full weight reduced weight 20 28 50 82 126 neutron number N P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 8 / 36

  11. Further observables Response properties in 208 Pb giant resonances: monopole (GMR), quadrupole (GQR), dipole (GDR) � ∞ d ω S D ( ω ) ω − 1 in 208 Pb dipole polarizability α D = 0 Other: neutron skin r n − r p in 208 Pb neutron “equation of state” (EoS) E / N neut ( ρ ) binding energy E B for exotic nuclei (super-heavy 120/182; neutron rich 148 Sn) P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 9 / 36

  12. Description of excitation spectra ↔ RPA and beyond RPA: small amplitude limit of time-dependent Hartree-Fock N = � eigenmodes = optimized 1 ph excitation operators ˆ ν b ν ˆ C † A ν � � ˆ , r L + n Y LM , j L ( qr ) Y LM , [ˆ H , r L + n Y LM ] , [ˆ a † ˆ a † ˆ a , ˆ a ˆ A ν ∈ H , j L ( qr ) Y LM ] � �� � � �� � E < 30 MeV global couplings, high E � [ˆ C N , [ˆ H , ˆ C † N ]] � RPA equations from variational formulation: δ b ∗ = 0 � [ˆ C N , ˆ C † ν N ] � numerically handled by commutator algebra on the grid P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 10 / 36

  13. Description of excitation spectra ↔ RPA and beyond RPA: small amplitude limit of time-dependent Hartree-Fock N = � eigenmodes = optimized 1 ph excitation operators ˆ ν b ν ˆ C † A ν � � ˆ , r L + n Y LM , j L ( qr ) Y LM , [ˆ H , r L + n Y LM ] , [ˆ a † ˆ a † ˆ a , ˆ a ˆ A ν ∈ H , j L ( qr ) Y LM ] � �� � � �� � E < 30 MeV global couplings, high E � [ˆ C N , [ˆ H , ˆ C † N ]] � RPA equations from variational formulation: δ b ∗ = 0 � [ˆ C N , ˆ C † ν N ] � numerically handled by commutator algebra on the grid +phonons: couple basis states ˆ A ν to few low-lying & strong ˆ C † S N = � A ν + � basis of 1 ph & 2 ph operators: ˜ ν b ν ˆ ν, S b ν, S ˆ A ν ˆ C † C † ˜ S approximations: residual interaction ˆ V res from RPA (?: 1 ph -1 ph used for 1 p 1 p -1 ph ) exchange terms in ˆ V res neglected (?: Pauli principle) P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 10 / 36

  14. Optimization of model parameters P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 11 / 36

  15. Optimization of model parameters exp. fit data: O exp f least squares error χ 2 ( p ) ✻ ✛ ❄ ✻ feedback fit observables: to minimize f = 1 ... N data labels fit data χ 2 ( p ) → χ 2 ( p 0 ) O f = O f ( p ) ✻ ❄ predicted model: parameters: ✲ ✲ observables: p = ( p 1 ... p F ) SHF A = � ˆ A � = A ( p ) N data � 2 O f ( p ) − O exp � � χ 2 ( p ) = f ∆ O 2 f f = 1 adopted error ∆ O f : χ 2 ( p 0 ) = N data − N params P .–G. Reinhard (Inst.Theor.Physik, Erlangen) Giant resonances in the Skyrme-Hartree-Fock theory COMEX05, Krakow 2015 12 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend