printing functional materials
play

Printing Functional Materials Jennifer A. Lewis School of - PowerPoint PPT Presentation

Polymer inks ! Printing Functional Materials Jennifer A. Lewis School of Engineering and Applied Sciences Wyss Institute for Biologically Inspired Engineering Harvard University NSF Additive Manufacturing Workshop 07.11.13


  1. Polymer inks ! Printing Functional Materials Jennifer A. Lewis School of Engineering and Applied Sciences Wyss Institute for Biologically Inspired Engineering Harvard University NSF Additive Manufacturing Workshop – 07.11.13 http://lewisgroup.seas harvard.edu ! !

  2. 3D Printing – Design, Print, Innovate Broad range of commercial printers and solidification schemes (photocuring, ! T, laser sintering, drying, etc.) Stereolithography Fused Deposition PolyJet Process Laser Sintering 3D Systems Stratasys Objet 3D Systems Laser Net Shaping 3D Printing Robocasting Electron Beam Melting Optomec Z Corp Robocasting Enterprises Arcam

  3. 3D Printing – Design, Print, Innovate Broad range of commercial printers and solidification schemes (photocuring, ! T, laser sintering, drying, etc.) Stereolithography Fused Deposition PolyJet Process Laser Sintering 3D Systems Stratasys Objet 3D Systems !!!!!!!!!!!!"#$%!&'!()*+%*+,!-.%/#0$!1234!#+.!#)!-#).!#5!%/.! !5#11#6*+,!2%%)*78%.$9! :;< " !"2%.)*21$!=.>*7*1*%?! :@< " !A7*1*%?!%#!(2%%.)+!B+.!5.2%8).$!:C!;DD! µ -< !! :&< " !E*,/!%/)#8,/(8%! Laser Net Shaping 3D Printing Robocasting Electron Beam Melting Optomec Z Corp Robocasting Enterprises Arcam !

  4. Several advances needed for 3D printing of high performance, functional materials ! FG.5#).!%/*$!(.)$#+21!-2+8523%8)*+,!).H#18%*#+!32+!%24.!(123.I!%/#8,/I!).$.2)3/.)$!6*11! +..0!%#!0.H.1#(!2!7)#20.)!2))2?!#5!)#78$%!()*+%*+,!-2%.)*21$JK!!! ! FJ!)2(*01?!,)#6*+,!-2)4.%I!L;!G!$21.$J!!! 27#8%!MDN!#5!-2)4.%!*$!()#%#%?(*+,K! ! O/.-*321!P!Q+,*+..)*+,!R.6$I!R#H!;SI!@D;;!*$$8.!

  5. Our research focus ¡ Ø Broaden materials palette for 3DP Ø Integration of multiple materials Ø Digitally specify form and function Ø Improve feature resolution by 100x Ø Improve throughput by 100x … ¡expedite ¡transformation ¡from ¡rapid ¡prototyping ¡ ¡ to ¡manufacturing ¡of ¡functional ¡materials ¡

  6. Custom stages designed for 3D printing Moderate Area, High Precision ! Large Area, High Speed Stage ! 10x10x5 cm 3 ± 50 nm ! 1m 2 x10 cm ± 5 µ m ! ! ! V = 0.1 -10 mm/s ! ! ! ! V = 1 -1000 mm/s !! E*,/!().3*$*#+I!12),.!2).2I!! 2+0!/*,/!$(..0!$%2,.$! T!*+%.,)2%*+,!-81%*(1.!&'!()*+%/.20$! .U,UI!V'"! !

  7. Printing ink filaments (in and out of plane) Ink filament printing ! ! continuous filament ! is extruded through ! deposition nozzle ! &D!-*3)#+!+#]]1.! Desired Ink Rheology: W*$3#$*%?I! ! !! :X2!$< ! $#1*0[1*4.! "#081* ! :X2< ! • " Shear thinning behavior facilitates $/.2)! flow through fine nozzles without %/*++*+,! =8*0!! clogging " ! ! R.6%#+*2+! " " ! • " Viscoelastic behavior enables Y/.2)!Z2%.!:$ [; < ! Y/.2)!Y%).$$ ! :X2< ! printing of self-supporting (spanning) features \+271.!%#!).%2*+! V*12-.+%2)?!()*+%*+,! B12-.+%2)?!$/2(.!

  8. Viscoelastic inks designed for 3D printing Ink design and deposition • ink must flow through nozzle without jamming • ink filaments must form high integrity interfaces • ink must solidify rapidly (via gelation, coagulation, or evaporation) • concentrated inks minimize shrinkage during drying colloidal inks ! fugitive inks ! nanoparticle inks ! polyelectrolyte inks ! sol-gel inks ! /01* µ 2* /01*(2* !"#$"%&'()*+"%,-$"*&'."*

  9. Reactive silver inks for integrated electronics ^214.)I!_.6*$! #$%& !:@D;@<`!X2%.+%!!B1.0! a!bDN!7814!3#+083%*H*%?!2%!;DDcO !!!

  10. Silver particle inks for integrated electronics @D!+-!2H.)2,.!I!d!e!dD!+-!0*$%)*78%*#+! A/+I!'8#$$I!R8]]#I!Z#,.)$I!_.6*$I!.%!21UI! &'()*') !:@DDb<`!A/+I!'8#$$I!2+0!_.6*$I!\Y[X2%.+%!MIb@@Ib&b!!

  11. Silver particle inks for printed electronics ! Silver inks are highly conductive as-printed A/+I!'8#$$I!R8]]#I!Z#,.)$I!_.6*$I!.%!21UI! &'()*') !:@DDb<`!A/+I!'8#$$I!2+0!_.6*$I!\Y[X2%.+%!MIb@@Ib&b!! Z8$$#!.%!21UI!A0H2+3.0!"2%.)*21$!:@D;;<!

  12. Solar panels - present design 100 µ m interconnects 78$72)$! fK!XW!3.11! Rigid, costly, active materials* occupy large area *silicon PV cells and silver interconnects

  13. Printing High Aspect Ratio Silver Microelectrodes ! 1 µ m nozzle 5 µ m nozzle 10 µ m nozzle 5 µ m nozzle 30 µ m nozzle 5 µ m nozzle 10 µ m nozzle 10 µ m nozzle 30 µ m nozzle A/+I!'8#$$I!R8]]#I!Z#,.)$I!_.6*$!.%!21U! &'()*')! :@DDb<U! !A/+I!'8#$$I!2+0!_.6*$I!\Y[X2%.+%!MIb@@Ib&b!!

  14. Flexible photovoltaics Q>2-(1.9! Y*!-*3)#3.11$!T! _8-*+.$3.+%!12?.)! :\W[38)271.!2+0!#),2+*3!0?.<!!!! ! W2$%!).083%*#+!*+!23%*H.!-2%.)*21$!8$.0! ! X)*+%271.!-*3)#3.11$!P!*+%.)3#++.3%$! 3#-7*+.0!6*%/!3#+3.+%)2%#)!#(%*3$!!! Z#,.)$I!R8]]#I.%!21I! +,-./)!%0112! :@D;;<U!

  15. Printing interconnects and bus bars 610 µ m nozzle f;D! µ -!! +#]]1.! G8$!72)$! g+%.)3#++.3%$! 30 µ m nozzle g+X!3.11$! &D! µ -!! +#]]1.! 10 cmx10 cm g+%.)3#++.3%$! Sparse array of PV cells; finer interconnects ! g+!3#1127#)2%*#+!6*%/!Y.-()*8$!2+0!YAgO!

  16. Flexible concentrator photovoltaics " ink ~1x10 -5 # •cm (after 30 min @ 175°C) Sheet resistance = 30 m # /sq 6” polyimide substrate Printed interconnects are highly flexible and can withstand repeated bending (1000’s cycles) without performance loss Printed interconnects exhibit excellent I-V response g+!3#1127#)2%*#+!6*%/!Y.-()*8$!2+0!YAgO!

  17. Conformal printing of electrically small antennas 3#((.)[7234.0!$87$%)2%.! h[2)-!2+%.++2! 3#+083%*H.!.(#>?! $*1H.)! Q1.3%)#0.$! :;DD! µ -<! ,12$$!! Y8((#)%! 5..0!(#*+%! @dUh!--!0*2-.%.)! 8, !i!DUS;!! 8, !C!DUd!*+0*32%.$!2+! 6*%/!G.)+/2)0!,)#8(!:QOQ!j!g11*+#*$<! 2 " k .1.3%)*3211?!$-211! = ! 2+%.++2!:QYA<! 0 !*U.UI! ,!9! " o :;< !! A02-$I!'8#$$I!"214#6$4*I!A/+I!R8]]#I!G.)+/2)0I!_.6*$I! $34,*')3!5,-)/(,67! :@D;;<!

  18. Performance characteristics G^!k!;SU&N! Z.$#+2+%!2%! k;UM!lE]! O#+32H.!2+%.++2! Qm3*.+3?!kM;N! VSWR: a measure of signal reflected at component junctions Ideally, VSWR = 1 (no reflected power, no mismatch loss) A02-$I!'8#$$I!"214#6$4*I!A/+I!R8]]#I!G.)+/2)0I!_.6*$I! $34,*')3!5,-)/(,67! :@D;;<!

  19. Embedded Electronics (carbon ink printed in polymer matrix) ! SDD!n-! +#]]1.! A$!()*+%.0! A5%.)!.+32($812%*#+! @DD!n-!! DN!$%).%3/! +#]]1.! !!!!"8%/!!!!!!!!!! &DDN!$%).%3/! o#1.$4?!!!!!!!!!!!!! 6*%/!%/.!^##0!,)#8(!

  20. Embedded Electronics (carbon ink printed in polymer matrix) ¡ Strain ¡Gage ¡ Length ¡= ¡20 ¡mm ¡ ¡ All ¡printed ¡ sequentially ¡in ¡ 1mm ¡thick ¡ EcoFlex ¡reservoir ¡ with ¡the ¡Wood ¡group ¡

  21. 3D Printed of Strain Gage Arrays 6*%/!%/.!^##0!,)#8(!

  22. Printed Three-Layer Stretchable Sensors 6*%/!%/.!^##0!,)#8(!

  23. Aim: Print Microbatteries w/ High Power & Energy Density For autonomous devices that: Energy ! Emission ! 1. Harvest energy Control ! - photovoltaic - thermoelectric - piezoelectric ! 2. Store energy Energy ! - micro-batteries w/ high energy Storage ! and power density Energy ! Harvesting ! 3. Perform function - Mechanical - Sensing - RF !0.H*3.! r8)!,#219! X)*+%!;!-- & !! &'!-*3)#72%%.)*.$! X ! *U.UI!$*].!#5!2!$*+,1.! !72%%.)?! ,)2*+!#5!$2+0!:s<! Lai et al., Adv. Mater. 2010 ! Warneke et al., Computer 2001 !

  24. Key Factors Influencing Power & Energy Density ;U " "2%.)*21$!'.$*,+! t " E*,/!#8%(8%!H#1%2,.!%/)#8,/!0.$*,+! #5!%/.!%6#!/215!.1.3%)#0.!).23%*#+$! t " E*,/!*#+!0*u8$*#+!3#.m3*.+%$!:E T I!_* T! *+!/#$%!-2%.)*21$<! t " R.6!1*,/%[6.*,/%!/#$%!-2%.)*21$! t " V2$%!).23%*#+!4*+.%*3$! _*O#r @! _*V.Xr S! _*"+ @ r S! ! @U " Y%)83%8).!'.$*,+! O/.-*321!Y#3*.%?!Z.H*.6$I!! t " &'!.1.3%)#0.!2)3/*%.3%8).! @DDbI!&hI!@@f! t " _2),.!$8)523.!2).2 ! t " v/*+!B1-!#5!23%*H.!-2%.)*21$! !!ZQ'\OQ!vZARYXrZv!_QRlvEY! r8)!V#38$9!!! &'!*+%.)0*,*%2%.0!! -*3)#72%%.)*.$! A/+! ^.*!

  25. Printing 3D Interdigitated Microbatteries ! a) b) Nozzle Current (30 µ m) ! collector (Au) ! LTO ! Glass ! c) d) Packaging ! LTO ! LFP ! oU!Y8+I!_.6*$I!'*11#+!.%!21I! $342!5,-)/2 !@D;&!

  26. Ink Viscosity and Elastic Modulus ¡ LFP ¡ink ¡(cathode) ¡ Ink ¡rheology ¡tailored ¡for ¡3D ¡filamentary ¡printing ¡ LTO ¡ink ¡(anode) ¡ K. ¡Sun, ¡Lewis, ¡Dillon ¡et ¡al, ¡ Adv. ¡Mater. ¡2013 ¡

  27. Printing High Aspect Ratio Structures ! ;!--! Y2+0!,)2*+$! [!!.23/!-*3)#72%%.)?!.p8*H21.+%!*+!$*].!%#!2!$*+,1.!,)2*+!#5!$2+0!

  28. Printed 3D Interdigitated Microbattery ¡ 200 µ m 300 µ m K. ¡Sun, ¡Lewis, ¡Dillon ¡et ¡al, ¡ Adv. ¡Mater. ¡2013 ¡

  29. Printed and Packaged 3D Microbattery ¡ 200 µ m K. ¡Sun, ¡Lewis, ¡Dillon ¡et ¡al, ¡ Adv. ¡Mater. ¡2013 ¡

  30. LFP-LTO Full Cell Properties ¡ K. ¡Sun, ¡Lewis, ¡Dillon ¡et ¡al, ¡ Adv. ¡Mater. ¡2013 ¡

  31. Z.5!&S9!O/*2+,!:"gv<!! Microbattery Performance ! &'[g"A!:_.6*$I!'*11#+<! Z.5!&M9!G)28+I!o*+,!:\g\O<!! 2).21!0.+$*%*.$!w!; $% !,.+!()*+%.0!72%%.)*.$!.>/*7*%!.>3.(%*#+21!(.)5#)-2+3.s!

  32. High throughput 3D printing 5 mm @'! 3;! <;! Multinozzle design based on Murray’s law: 1 mm 3 " 3 r parent r = branch _ generation Hierarchical branching network 200 μ m Created by CNC milling All 64 nozzles are 205±3 µm on a side !

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend