preliminaries kolmogorov complexity
play

preliminaries: Kolmogorov complexity U(p) = T i (p) K(x) = min p { p - PowerPoint PPT Presentation

A safe & computable approximation to Kolmogorov complexity Peter Bloem, Francisco Mota, Steven de Rooij, Lus Antunes & Pieter Adriaans preliminaries: Kolmogorov complexity U(p) = T i (p) K(x) = min p { p : U(p) = x }


  1. A safe & computable approximation to Kolmogorov complexity Peter Bloem, Francisco Mota, Steven de Rooij, Luìs Antunes & Pieter Adriaans

  2. preliminaries: Kolmogorov complexity U(ıp) = T i (p) K(x) = min p { p : U(p) = x }

  3. preliminaries: Kolmogorov complexity U(ıp) = T i (p) K(x) = min p { p : U(p) = x } U is a formalisation of the notion of a ӫ description K is invariant to the choice of U ӫ (up to a constant)

  4. preliminaries: Kolmogorov complexity U(ıp) = T i (p) K(x) = min p { p : U(p) = x } U is a formalisation of the notion of a ӫ description K is invariant to the choice of U ӫ (up to a constant)

  5. preliminaries: Kolmogorov complexity U(ıp) = T i (p) K(x) = min p { p : U(p) = x } U is a formalisation of the notion of a ӫ description K is invariant to the choice of U ӫ (up to a constant)

  6. motivation “Kolmogorov is not computable, it’s only of theoretical use” No, approximations are usually correct

  7. preliminaries: Probabilities & codes L(x) : (prefjx) code length function ӫ p(x) : probability (semi) measure ӫ - log p(x) = L(x)

  8. step 1: computable probabilities From TMs to probabilities: T(p) = x p T (x) = Σ p:T(p) = x 2 -|p| m(x) = p U (x) equivalent to the lower semicomputable semimeasures

  9. step 2: model classes A model class C is an effectively enumerable subset of all Turing machines. U C (ıp) = T i (p) K C (x) = min p { p : U C (p) = x } m C (x) = Σ p:U C (p) = x 2 -|p|

  10. step 3: safe approximation L(x) : approximating ӫ code-length function L(x) is safe against p when ӫ p ( L(x) - K(x) ≥ k ) ≤ cb -k for some c and b > 1

  11. Is K C safe against p∈C ?

  12. no.

  13. not x x x x x x x x x

  14. - log m C (x) not x K C (x) x x x x x x x x

  15. Is - log m C safe against p∈C ?

  16. yes.

  17. -log m C is safe against m C m C � − log m C ( x ) − K ( x ) � k � = m C � m C ( x ) � 2 − k 2 − K ( x ) � � x : m C ( x ) � 2 − k 2 − K ( x ) m C ( x ) = � 2 − k 2 − K ( x ) � 2 − K ( x ) � 2 − k = 2 − k �

  18. -log m C is safe against m C m C � − log m C ( x ) − K ( x ) � k � = m C � m C ( x ) � 2 − k 2 − K ( x ) � � x : m C ( x ) � 2 − k 2 − K ( x ) m C ( x ) = � 2 − k 2 − K ( x ) � 2 − K ( x ) � 2 − k = 2 − k �

  19. -log m C is safe against m C m C � − log m C ( x ) − K ( x ) � k � = m C � m C ( x ) � 2 − k 2 − K ( x ) � � x : m C ( x ) � 2 − k 2 − K ( x ) m C ( x ) = � 2 − k 2 − K ( x ) � 2 − K ( x ) � 2 − k = 2 − k �

  20. -log m C is safe against m C m C � − log m C ( x ) − K ( x ) � k � = m C � m C ( x ) � 2 − k 2 − K ( x ) � � x : m C ( x ) � 2 − k 2 − K ( x ) m C ( x ) = � 2 − k 2 − K ( x ) � 2 − K ( x ) � 2 − k = 2 − k �

  21. -log m C is safe against m C m C � − log m C ( x ) − K ( x ) � k � = m C � m C ( x ) � 2 − k 2 − K ( x ) � � x : m C ( x ) � 2 − k 2 − K ( x ) m C ( x ) = � 2 − k 2 − K ( x ) � 2 − K ( x ) � 2 − k = 2 − k �

  22. -log m C is safe against m C m C � − log m C ( x ) − K ( x ) � k � = m C � m C ( x ) � 2 − k 2 − K ( x ) � � x : m C ( x ) � 2 − k 2 − K ( x ) m C ( x ) = � 2 − k 2 − K ( x ) � 2 − K ( x ) � 2 − k = 2 − k �

  23. -log m C is safe against members of C � m C ( · ) = c q p q ( · ) � c q p q ( · ) q ∈ C − log m C ( x ) − K ( x ) � k � � c q p q � m C � − log m C ( x ) − K ( x ) � k � � 2 − k

  24. -log m C is safe against members of C � m C ( · ) = c q p q ( · ) � c q p q ( · ) q ∈ C − log m C ( x ) − K ( x ) � k � � c q p q � m C � − log m C ( x ) − K ( x ) � k � � 2 − k

  25. -log m C is safe against members of C � m C ( · ) = c q p q ( · ) � c q p q ( · ) q ∈ C − log m C ( x ) − K ( x ) � k � � c q p q � m C � − log m C ( x ) − K ( x ) � k � � 2 − k

  26. -log m C is safe against members of C � m C ( · ) = c q p q ( · ) � c q p q ( · ) q ∈ C − log m C ( x ) − K ( x ) � k � � c q p q � m C � − log m C ( x ) − K ( x ) � k � � 2 − k

  27. can we compute m C ? We can if it’s upper and lower ӫ semicomputable lower: dovetail all programs for U C ӫ upper: dovetail until ӫ (1-s)/s x ≤ 2 c − 1 If C is complete, this algorithm is com- ӫ putable

  28. κ C (x) = κ C (x) = dominates 2-safe -log m(x) -log m C (x) -log m C (x) bounds dominates bounds bounds dominates unsafe K C (x) K(x) dominates

  29. What does this buy us? bridge between the practical and the ӫ platonic Bayesian ↔ MDL ↔ Algorithmic ӫ corollary: K t ӫ Additional results: ID, NID ӫ

  30. Questions?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend