pr cision p adique
play

Prcision p -adique Journes Nationales du Calcul Formel 2014 - PowerPoint PPT Presentation

Prcision p -adique Prcision p -adique Journes Nationales du Calcul Formel 2014 X.Caruso, P.Lairez, D.Roe, T.Vaccon University of Rennes I, TU Berlin, University of Calgary, University of Rennes I 6 novembre 2014 X.Caruso, P.Lairez, D.Roe,


  1. Précision p -adique p -adic precision p -adic algorithms and step-by-step analysis Optimality Step-by-step analysis is not optimal. Q 2 Q 2 → p p Let f : ( x , y ) �→ ( x + y , x − y ) . We would like to compute f ◦ f ( x , y ) with ( x , y ) = (1 + O ( p 10 ) , 1 + O ( p )) . If we apply f two times, we get : f ◦ f ( x , y ) = (2 + O ( p ) , 2 + O ( p )) .

  2. Précision p -adique p -adic precision p -adic algorithms and step-by-step analysis Optimality Step-by-step analysis is not optimal. Q 2 Q 2 → p p Let f : ( x , y ) �→ ( x + y , x − y ) . We would like to compute f ◦ f ( x , y ) with ( x , y ) = (1 + O ( p 10 ) , 1 + O ( p )) . If we apply f two times, we get : f ◦ f ( x , y ) = (2 + O ( p ) , 2 + O ( p )) . If we remark that f ◦ f = 2 Id , we get : f ◦ f ( x , y ) = (2 + O ( p 10 ) , 2 + O ( p )) . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  3. Précision p -adique p -adic precision p -adic algorithms and step-by-step analysis Optimality Step-by-step analysis is not optimal. Q 2 Q 2 → p p Let f : ( x , y ) �→ ( x + y , x − y ) . We would like to compute f ◦ f ( x , y ) with ( x , y ) = (1 + O ( p 10 ) , 1 + O ( p )) . If we apply f two times, we get : f ◦ f ( x , y ) = (2 + O ( p ) , 2 + O ( p )) . If we remark that f ◦ f = 2 Id , we get : f ◦ f ( x , y ) = (2 + O ( p 10 ) , 2 + O ( p )) . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  4. Précision p -adique p -adic precision The differential approach Table of contents 1 p -adic precision p -adic algorithms and step-by-step analysis The differential approach Improvements 2 Precision in practice Linear Differential Equation (cf BGPS) About implementation Lifting method X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  5. Précision p -adique p -adic precision The differential approach The Main lemma of p -adic differential precision Lemma Let f : Q n p → Q m p be a differentiable mapping.

  6. Précision p -adique p -adic precision The differential approach The Main lemma of p -adic differential precision Lemma Let f : Q n p → Q m p be a differentiable mapping. Let x ∈ Q n p . We assume that f ′ ( x ) is surjective .

  7. Précision p -adique p -adic precision The differential approach The Main lemma of p -adic differential precision Lemma Let f : Q n p → Q m p be a differentiable mapping. Let x ∈ Q n p . We assume that f ′ ( x ) is surjective . Then for any ball B = B (0 , r ) small enough , f ( x + B ) = f ( x ) + f ′ ( x ) · B . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  8. Précision p -adique p -adic precision The differential approach The Main lemma of p -adic differential precision Lemma Let f : Q n p → Q m p be a differentiable mapping. Let x ∈ Q n p . We assume that f ′ ( x ) is surjective . Then for any ball B = B (0 , r ) small enough , f ( x + B ) = f ( x ) + f ′ ( x ) · B . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  9. Précision p -adique p -adic precision The differential approach Geometrical meaning Interpretation x f ( x ) B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  10. Précision p -adique p -adic precision The differential approach Geometrical meaning Interpretation x f ( x ) f ′ ( x ) B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  11. Précision p -adique p -adic precision The differential approach Geometrical meaning Interpretation x f ( x ) f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  12. Précision p -adique p -adic precision The differential approach Geometrical meaning Interpretation x f ( x ) x + B f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  13. Précision p -adique p -adic precision The differential approach Geometrical meaning Interpretation x f ( x ) x + B f f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  14. Précision p -adique p -adic precision The differential approach Geometrical meaning Interpretation x f ( x ) x + B f ( x ) + f ′ ( x ) · B f f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  15. Précision p -adique p -adic precision Improvements Table of contents 1 p -adic precision p -adic algorithms and step-by-step analysis The differential approach Improvements 2 Precision in practice Linear Differential Equation (cf BGPS) About implementation Lifting method X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  16. Précision p -adique p -adic precision Improvements Lattices X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  17. Précision p -adique p -adic precision Improvements Lattices Lemma Let f : Q n p → Q m p be a differentiable mapping. Let x ∈ Q n p . We assume that f ′ ( x ) is surjective . Then for any ball B = B (0 , r ) small enough , f ( x + B ) = f ( x ) + f ′ ( x ) · B . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  18. Précision p -adique p -adic precision Improvements Lattices Lemma Let f : Q n p → Q m p be a differentiable mapping. Let x ∈ Q n p . We assume that f ′ ( x ) is surjective . Then for any ball B = B (0 , r ) small enough , for any open lattice H ⊂ B f ( x + H ) = f ( x ) + f ′ ( x ) · H . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  19. Précision p -adique p -adic precision Improvements Lattices Lemma Let f : Q n p → Q m p be a differentiable mapping. Let x ∈ Q n p . We assume that f ′ ( x ) is surjective . Then for any ball B = B (0 , r ) small enough , for any open lattice H ⊂ B f ( x + H ) = f ( x ) + f ′ ( x ) · H . Remark This allows more models of precision, like ( x , y ) = (1 + O ( p 10 ) , 1 + O ( p )) . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  20. Précision p -adique p -adic precision Improvements Lattices Lemma Let f : Q n p → Q m p be a differentiable mapping. Let x ∈ Q n p . We assume that f ′ ( x ) is surjective . Then for any ball B = B (0 , r ) small enough , for any open lattice H ⊂ B f ( x + H ) = f ( x ) + f ′ ( x ) · H . Remark This allows more models of precision, like ( x , y ) = (1 + O ( p 10 ) , 1 + O ( p )) . Remark Our framework can be extended to (complete) ultrametric K -vector spaces ( e.g. F p (( X )) n , Q (( X )) m ). X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  21. Précision p -adique p -adic precision Improvements Higher differentials X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  22. Précision p -adique p -adic precision Improvements Higher differentials What is small enough ? How can we determine when the lemma applies ? X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  23. Précision p -adique p -adic precision Improvements Higher differentials What is small enough ? How can we determine when the lemma applies ? When f is locally analytic, it essentially corresponds to + ∞ � 1 k ! f ( k ) ( x ) · H k ⊂ f ′ ( x ) · H . k =2 X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  24. Précision p -adique p -adic precision Improvements Higher differentials What is small enough ? How can we determine when the lemma applies ? When f is locally analytic, it essentially corresponds to + ∞ � 1 k ! f ( k ) ( x ) · H k ⊂ f ′ ( x ) · H . k =2 This can be determined with Newton-polygon techniques. X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  25. Précision p -adique p -adic precision Improvements Some differentiable operations Some more examples We can apply our method to: X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  26. Précision p -adique p -adic precision Improvements Some differentiable operations Some more examples We can apply our method to: On matrices: determinant, characteristic polynomial, LU factorization... X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  27. Précision p -adique p -adic precision Improvements Some differentiable operations Some more examples We can apply our method to: On matrices: determinant, characteristic polynomial, LU factorization... On Q p [ X ] : evaluation, interpolation, GCD, factorization... X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  28. Précision p -adique p -adic precision Improvements Some differentiable operations Some more examples We can apply our method to: On matrices: determinant, characteristic polynomial, LU factorization... On Q p [ X ] : evaluation, interpolation, GCD, factorization... On Q p [ X 1 , . . . , X n ] : division, Gröbner bases. X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  29. Précision p -adique p -adic precision Improvements Some differentiable operations Some more examples We can apply our method to: On matrices: determinant, characteristic polynomial, LU factorization... On Q p [ X ] : evaluation, interpolation, GCD, factorization... On Q p [ X 1 , . . . , X n ] : division, Gröbner bases. X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  30. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Table of contents 1 p -adic precision p -adic algorithms and step-by-step analysis The differential approach Improvements 2 Precision in practice Linear Differential Equation (cf BGPS) About implementation Lifting method X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  31. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Newton series Definition Let P ∈ k [ X ], P = � i ( X − α i ) (over k ). The Newton series of P is � � i ) t n = − ( P ∗ ) ′ α n f P = ( P ∗ , n i with P ∗ the reciprocal polynomial of P . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  32. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Newton series Definition Let P ∈ k [ X ], P = � i ( X − α i ) (over k ). The Newton series of P is � � i ) t n = − ( P ∗ ) ′ α n f P = ( P ∗ , n i with P ∗ the reciprocal polynomial of P . Remark When char ( k ) = 0 , by Newton’s identities, we can recover P from f P . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  33. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation over Newton series Proposition Let P × Q = � i ( X − α i ) � j ( X − β j ) and P ⊗ Q = � i , j ( X − α i β j ) . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  34. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation over Newton series Proposition Let P × Q = � i ( X − α i ) � j ( X − β j ) and P ⊗ Q = � i , j ( X − α i β j ) . Then f P × Q = f P + f Q X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  35. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation over Newton series Proposition Let P × Q = � i ( X − α i ) � j ( X − β j ) and P ⊗ Q = � i , j ( X − α i β j ) . Then f P × Q = f P + f Q and f P ⊗ Q is obtained by the product coefficient by coefficient of f P and f Q . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  36. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation over Newton series Proposition Let P × Q = � i ( X − α i ) � j ( X − β j ) and P ⊗ Q = � i , j ( X − α i β j ) . Then f P × Q = f P + f Q and f P ⊗ Q is obtained by the product coefficient by coefficient of f P and f Q . Remark How to do that on Z / p Z ? X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  37. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation over Newton series Proposition Let P × Q = � i ( X − α i ) � j ( X − β j ) and P ⊗ Q = � i , j ( X − α i β j ) . Then f P × Q = f P + f Q and f P ⊗ Q is obtained by the product coefficient by coefficient of f P and f Q . Remark How to do that on Z / p Z ? We can lift Z / p Z to Z p , and reduce mod p afterwards. X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  38. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Idea of the algorithm Proposition (How to recover P with f P ) We notice that ( P ∗ ) ′ = − f P ∗ P ∗ , X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  39. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Idea of the algorithm Proposition (How to recover P with f P ) We notice that ( P ∗ ) ′ = − f P ∗ P ∗ , Therefore y ′ = a ( x ) ∗ y , with a ( x ) = − f P and y = P ∗ . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  40. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Idea of the algorithm Proposition (How to recover P with f P ) We notice that ( P ∗ ) ′ = − f P ∗ P ∗ , Therefore y ′ = a ( x ) ∗ y , with a ( x ) = − f P and y = P ∗ . Thus, we can recover P with f P by solving a linear differential equation (in Z p [[ x ]] ). X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  41. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation of the differential Theorem The loss in precision to recover the n-th coefficient of P with f P is in O ( log p ( n ) ) . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  42. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation of the differential Theorem The loss in precision to recover the n-th coefficient of P with f P is in O ( log p ( n ) ) . Proof. We differentiate the mapping sending a to the solution of y ′ = a ( t ) y . y 0 corresponds to P ∗ , and a to − f P , in Z p [[ x ]] X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  43. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation of the differential Theorem The loss in precision to recover the n-th coefficient of P with f P is in O ( log p ( n ) ) . Proof. We differentiate the mapping sending a to the solution of y ′ = a ( t ) y . ( y 0 + δ y ) ′ = ( a + δ a )( y 0 + δ y ) X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  44. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation of the differential Theorem The loss in precision to recover the n-th coefficient of P with f P is in O ( log p ( n ) ) . Proof. We differentiate the mapping sending a to the solution of y ′ = a ( t ) y . ( y 0 + δ y ) ′ = ( a + δ a )( y 0 + δ y ) ( δ y ) ′ = a δ y + y 0 δ a X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  45. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation of the differential Theorem The loss in precision to recover the n-th coefficient of P with f P is in O ( log p ( n ) ) . Proof. We differentiate the mapping sending a to the solution of y ′ = a ( t ) y . ( δ y ) ′ = a δ y + y 0 δ a X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  46. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation of the differential Theorem The loss in precision to recover the n-th coefficient of P with f P is in O ( log p ( n ) ) . Proof. We differentiate the mapping sending a to the solution of y ′ = a ( t ) y . ( δ y ) ′ = a δ y + y 0 δ a By variation of parameters, � y − 1 δ y = y 0 × y 0 δ a d t . 0 X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  47. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation of the differential Theorem The loss in precision to recover the n-th coefficient of P with f P is in O ( log p ( n ) ) . Proof. By variation of parameters, � y − 1 δ y = y 0 × y 0 δ a d t . 0 X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  48. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation of the differential Theorem The loss in precision to recover the n-th coefficient of P with f P is in O ( log p ( n ) ) . Proof. By variation of parameters, � y − 1 δ y = y 0 × y 0 δ a d t . 0 � δ y = y 0 δ a d t . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  49. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation of the differential Theorem The loss in precision to recover the n-th coefficient of P with f P is in O ( log p ( n ) ) . Proof. � δ y = y 0 δ a d t . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  50. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation of the differential Theorem The loss in precision to recover the n-th coefficient of P with f P is in O ( log p ( n ) ) . Proof. � δ y = y 0 δ a d t . � � i a i x i = � i a i x i +1 Since i +1 , it yields a logarithmic loss in precision. X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  51. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation of the differential Theorem The loss in precision to recover the n-th coefficient of P with f P is in O ( log p ( n ) ) . Proof. � δ y = y 0 δ a d t . In other words, if δ a = O ( p k ), i.e. δ a = � i u i p k t i , then δ y = � p k i +1 t i . i v i X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  52. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Computation of the differential Theorem The loss in precision to recover the n-th coefficient of P with f P is in O ( log p ( n ) ) . Proof. � δ y = y 0 δ a d t . In other words, if δ a = O ( p k ), i.e. δ a = � i u i p k t i , then δ y = � p k i +1 t i . i v i X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  53. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Newton polygons technique Newton and Legendre X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  54. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Newton polygons technique Newton and Legendre log � � 2 k order Newton polygon of f ≥ 2 , − 2 m convex lower-bound of ( n , � f n � ) n ≥ 2 − km X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  55. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Newton polygons technique Newton and Legendre log ε − 2 m − m log ε − 2 m + 2 log ε NP ( f ≥ 2 ) ∗ y = 2 x + 2 m X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  56. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Newton polygons technique Newton and Legendre log ε − 2 m − m y = x + log ε log ε − 2 m + 2 log ε NP ( f ≥ 2 ) ∗ y = 2 x + 2 m X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  57. Précision p -adique Precision in practice Linear Differential Equation (cf BGPS) Newton polygons technique Newton and Legendre log ε − 2 m − m y = x + log ε log ε − 2 m + 2 log ε NP ( f ≥ 2 ) ∗ y = 2 x + 2 m X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  58. Précision p -adique Precision in practice About implementation Table of contents 1 p -adic precision p -adic algorithms and step-by-step analysis The differential approach Improvements 2 Precision in practice Linear Differential Equation (cf BGPS) About implementation Lifting method X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  59. Précision p -adique Precision in practice About implementation Newton scheme Proposition One can compute y 0 through some Newton scheme : � u l +1 ← u l + u ′ l ) a + O ( x 2 l +1 +1 ) . l ( a × u l − u ′ u ′ a l X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  60. Précision p -adique Precision in practice About implementation Newton scheme Proposition One can compute y 0 through some Newton scheme : � u l +1 ← u l + u ′ l ) a + O ( x 2 l +1 +1 ) . l ( a × u l − u ′ u ′ a l Remark � O ( p N ) x k = O ( p N ) k + 1 x k +1 . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  61. Précision p -adique Precision in practice About implementation Newton scheme Proposition One can compute y 0 through some Newton scheme : � u l +1 ← u l + u ′ l ) a + O ( x 2 l +1 +1 ) . l ( a × u l − u ′ u ′ a l Remark � O ( p N ) x k = O ( p N ) k + 1 x k +1 . One lose E (log p (2 l )) at each step. There are E (log 2 (2 N )) steps to reach x 2 N , it means a naïve loss in precision to compute the coefficient of x 2 N � (log 2 N ) 2 � in . X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  62. Précision p -adique Precision in practice About implementation What happens in practice ? Figure: Precision over the output X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  63. Précision p -adique Precision in practice About implementation What happens in practice ? Figure: Precision over the output X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  64. Précision p -adique Precision in practice About implementation What happens in practice ? Figure: Precision over the output X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  65. Précision p -adique Precision in practice About implementation What happens in practice ? Figure: Precision over the output X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  66. Précision p -adique Precision in practice Lifting method Table of contents 1 p -adic precision p -adic algorithms and step-by-step analysis The differential approach Improvements 2 Precision in practice Linear Differential Equation (cf BGPS) About implementation Lifting method X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  67. Précision p -adique Precision in practice Lifting method More on the differential method Differential tracking of precision x + O ( p N ) x B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  68. Précision p -adique Precision in practice Lifting method More on the differential method Differential tracking of precision x + O ( p N ) x f ′ ( x ) B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  69. Précision p -adique Precision in practice Lifting method More on the differential method Differential tracking of precision x + O ( p N ) x f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  70. Précision p -adique Precision in practice Lifting method More on the differential method Differential tracking of precision x + O ( p N ) ? + O ( p N ) x x + B f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  71. Précision p -adique Precision in practice Lifting method More on the differential method Differential tracking of precision x + O ( p N ) ? + O ( p N ) x x + B f f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  72. Précision p -adique Precision in practice Lifting method More on the differential method Differential tracking of precision x + O ( p N ) ? + O ( p N ) x x + B f ( x ) ? f f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  73. Précision p -adique Precision in practice Lifting method More on the differential method Differential tracking of precision � x + O ( p N ) f ( x ) + O ( p M ) � f x x + B f f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  74. Précision p -adique Precision in practice Lifting method More on the differential method Differential tracking of precision � x + O ( p N ) f ( x ) + O ( p M ) � f x x + B f f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  75. Précision p -adique Precision in practice Lifting method More on the differential method Differential tracking of precision x + O ( p N + N ′ ) � f x x + B f f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  76. Précision p -adique Precision in practice Lifting method More on the differential method Differential tracking of precision x + O ( p N + N ′ ) y + O ( p M ′ ) � f x x + B f f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  77. Précision p -adique Precision in practice Lifting method More on the differential method Differential tracking of precision x + O ( p N + N ′ ) y + O ( p M ′ ) ⊂ f ( x ) + O ( p N ) � f x x + B f f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  78. Précision p -adique Precision in practice Lifting method More on the differential method Differential tracking of precision x + O ( p N + N ′ ) y + O ( p M ′ ) ⊂ f ( x ) + O ( p N ) � f x x + B f ( x ) + f ′ ( x ) · B f f ′ ( x ) f ′ ( x ) · B B X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

  79. Précision p -adique Precision in practice Lifting method Buffer method Proposition One can use the following Newton scheme with lift: Lift u l to O ( p N + m ) , a + O ( x 2 l ) ← u l × u ′− 1 + O ( p N + m , x 2 l ) . l � u l +1 ← u l + u ′ l + O ( x 2 l +1 +1 ) . l ) a ( a × u l − u ′ l u ′ a X.Caruso, P.Lairez, D.Roe, T.Vaccon Précision p -adique

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend