power balancing in a dc microgrid elevator system through
play

Power balancing in a DC microgrid elevator system through constrained - PowerPoint PPT Presentation

Power balancing in a DC microgrid elevator system through constrained optimization Thanh Hung PHAM, Ionela PRODAN and Laurent LEFEVRE Grenoble INP (Institut National Polytechnique de Grenoble), LCIS (Laboratoire de Conception et dInt


  1. Power balancing in a DC microgrid elevator system through constrained optimization Thanh Hung PHAM, Ionela PRODAN and Laurent LEFEVRE Grenoble INP (Institut National Polytechnique de Grenoble), LCIS (Laboratoire de Conception et d’Int´ egration des Syst` emes), Valence, France, thanh-hung.pham@lcis.grenoble-inp.fr,phamthanhhung1204@gmail.com This work was supported by a mobility project of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-III-P1-1.1-MCT-2016-0037, within PNCDI III T.H. Pham, I. Prodan, L.Lef` evre (Grenoble INP (Institut National Polytechnique de Grenoble), LCIS (Laboratoire de Conception et d’Int´ Power balancing in a DC microgrid December 8th, 2016 1 / 27 egration

  2. Introduction Outline Introduction 1 DC microgrid modeling 2 Port-Hamiltonian system on graphs DC microgrid elevator system modeling Battery scheduling by optimization-based control 3 Energy-preserving discrete-time model Scheduling formulation Simulation 4 Simulation software and numerical data Nominal scenario Perturbation-affected scenario Conclusions 5 Reference 6 T.H. Pham, I. Prodan, L.Lef` evre (Grenoble INP (Institut National Polytechnique de Grenoble), LCIS (Laboratoire de Conception et d’Int´ Power balancing in a DC microgrid December 8th, 2016 2 / 27 egration

  3. Introduction DC microgrid elevator system DC/DC converter Battery Solar panel DC/DC converter Synschronous machine AC/DC converter Mechanical system AC/DC converter Three-phase electrical network DC microgrid elevator system, Pham et al. (2015) T.H. Pham, I. Prodan, L.Lef` evre (Grenoble INP (Institut National Polytechnique de Grenoble), LCIS (Laboratoire de Conception et d’Int´ Power balancing in a DC microgrid December 8th, 2016 3 / 27 egration

  4. Introduction Introduction General goal: Constrained optimization control for for efficiently managing the DC microgrid operation. State of the art: bus voltage control (Alamir et al. (2014); Zonetti et al. (2015)) DC/DC ⇒ do not optimize electricity cost, converter Battery logic rules (Xu and Chen (2011)) Solar panel DC/DC converter ⇒ high storage capacity and not efficient, Synschronous offline optimization-based control approach machine (Lifshitz and Weiss (2014)) AC/DC converter ⇒ lack of the robustness, Mechanical system Economic MPC (Parisio et al. (2016); AC/DC converter Touretzky and Baldea (2016)) ⇒ looses relevant details in what regards Three-phase electrical the physical power-preserving connection, network DC microgrid elevator system, Pham et al. (2015) neglects the nonlinear storage dynamic and the system dissipation. Solution: Port-Hamiltonian (PH) formulation for the modeling (van der Schaft and Maschke (2013)), Energy-preserving time discretization model (Talasila et al. (2006)), Centralized economic Model Predictive Control (MPC) design (Rawlings and Mayne (2009)). T.H. Pham, I. Prodan, L.Lef` evre (Grenoble INP (Institut National Polytechnique de Grenoble), LCIS (Laboratoire de Conception et d’Int´ Power balancing in a DC microgrid December 8th, 2016 4 / 27 egration

  5. DC microgrid modeling Outline Introduction 1 DC microgrid modeling 2 Port-Hamiltonian system on graphs DC microgrid elevator system modeling Battery scheduling by optimization-based control 3 Energy-preserving discrete-time model Scheduling formulation Simulation 4 Simulation software and numerical data Nominal scenario Perturbation-affected scenario Conclusions 5 Reference 6 T.H. Pham, I. Prodan, L.Lef` evre (Grenoble INP (Institut National Polytechnique de Grenoble), LCIS (Laboratoire de Conception et d’Int´ Power balancing in a DC microgrid December 8th, 2016 5 / 27 egration

  6. DC microgrid modeling Port-Hamiltonian system on graphs Bond graph and Port-Hamiltonian system Bond Graph Dirac structure and PH system _ + + _ + + + + _ _ _ _ Dirac structure and port-Hamiltonian systems. Constrained input-output representation For all PH system, there exists λ ( t ) such that � e ( t ) = Jf ( t ) + G λ ( t ) , = G T f ( t ) , 0     ∇ H ( x ) − ˙ x ( t )  , f ( t ) =  , e ( t ) = e R ( t ) f R ( t )   e E ( t ) f E ( t ) Example: Bond Graph for simple series and parallel DC electrical circuit. = − J T J Advantage x ( t ) : state vector f ( t ) : flow vector (current, voltage, speed, force, ...) Explicit description of the exchange of power, of e ( t ) : effort vector (voltage, current, force, speed, ...) the dissipation and of the energy storage for H ( x ) : Hamiltonian (energy function) multi-physics system. ∇ H ( x ) : gradient of H ( x ) T.H. Pham, I. Prodan, L.Lef` evre (Grenoble INP (Institut National Polytechnique de Grenoble), LCIS (Laboratoire de Conception et d’Int´ Power balancing in a DC microgrid December 8th, 2016 6 / 27 egration

  7. DC microgrid modeling Port-Hamiltonian system on graphs PH system on graphs for RC circuit RC circuit graph RC electrical circuit: example Consider a circuit including: _ 2 2 + N e edges: N S capacitors, N R resistors, N E 3 + + external elements, + + + _ _ _ _ _ N v vertices: nodes between the edges. The incidence matrix B ∈ R N v × N e : 1 1  1 , if node i is a head vertex of edge j,  B ij = − 1 , if node i is a end vertex of edge j, 0 , else.  PH system on graphs formulation = − B T v p ( t ) , � e ( t ) Edge order: C-R-E = Bf ( t ) , 0     ∇ H ( x ) − ˙ x ( t )  , f ( t ) =  , e ( t ) = v R ( t ) i R ( t )   v E ( t ) i E ( t ) Energy stored in the capacitor: x ( t ) : capacitor charge (state vector) x ( t ) 2 H ( x ) = 1 i R ( t ) , i E ( t ) : current . 2 v R ( t ) , v E ( t ) : voltage C v p ( t ) : potential of the vertices T.H. Pham, I. Prodan, L.Lef` evre (Grenoble INP (Institut National Polytechnique de Grenoble), LCIS (Laboratoire de Conception et d’Int´ Power balancing in a DC microgrid December 8th, 2016 7 / 27 egration

  8. DC microgrid modeling DC microgrid elevator system modeling DC microgrid elevator system model DC/DC converter Battery Solar panel DC/DC v ( t ) : voltage converter i ( t ) : current P ( t ) : power Synschronous d ( t ) : converter duty cycle machine : ith state variable (charge) xi ( t ) AC/DC ∂ xi H : partial derivative of H with respect to xi (voltage) converter xi ( t ) ˙ : time derivative of xi (current) Mechanical R : resistor system AC/DC converter Three-phase electrical network _ + _ _ _ 2 + + + 4 Load power 3 + + source 7 + + _ _ _ 1 _ _ + 1 Renewable power source External _ + 6 grid 5 _ _ + + 1 1 T.H. Pham, I. Prodan, L.Lef` evre (Grenoble INP (Institut National Polytechnique de Grenoble), LCIS (Laboratoire de Conception et d’Int´ Power balancing in a DC microgrid December 8th, 2016 8 / 27 egration

  9. DC microgrid modeling DC microgrid elevator system modeling Model of the components _ + _ _ _ 2 + + 4 + Load power 3 + + source 7 + _ _ + 1 _ _ _ + 1 Renewable power source External _ + 5 6 grid _ _ + + 1 1 Battery admits the stored energy: External grid is a current source i e ( t ): H ( x ) � x ( t ) T Q 1 + 1 2 x ( t ) T Q 2 x ( t ) , i e , min ≤ i e ( t ) ≤ i e , max . Load is a power profile P l ( t ): Battery charge limitation: i l ( t ) v l ( t ) = P l ( t ) . 0 . 5 x max ≤ x ( t ) ≤ x max , Renewable source is a power profile P r ( t ): Battery current limitation: i r ( t ) v r ( t ) = P r ( t ) . i min ≤ i b , R 2 ( t ) ≤ i max . T.H. Pham, I. Prodan, L.Lef` evre (Grenoble INP (Institut National Polytechnique de Grenoble), LCIS (Laboratoire de Conception et d’Int´ Power balancing in a DC microgrid December 8th, 2016 9 / 27 egration

  10. DC microgrid modeling DC microgrid elevator system modeling Model of the components _ + _ _ _ 2 + + 4 + Load power 3 + + source 7 + _ _ + 1 _ _ _ + 1 Renewable power source External _ + 5 6 grid _ _ + + 1 1 DC/DC converter respects the power-preserving Resistor network includes relation: the resistors of battery, � the resistors of transmission lines. d ( t ) i c 1 ( t ) = − i c 2 ( t ) , v c 1 ( t ) = d ( t ) v c 2 ( t ) , The Ohm’ law is: v R ( t ) = − Ri R ( t ) , with the positive duty cycle: where R is positive diagonal matrix. d ( t ) > 0 . T.H. Pham, I. Prodan, L.Lef` evre (Grenoble INP (Institut National Polytechnique de Grenoble), LCIS (Laboratoire de Conception et d’Int´ Power balancing in a DC microgrid December 8th, 2016 10 / 27 egration

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend