polynomials number theory and experimental mathematics
play

Polynomials, Number Theory, and Experimental Mathematics Michael - PowerPoint PPT Presentation

Challenges in 21st Century Experimental Mathematical Computation Polynomials, Number Theory, and Experimental Mathematics Michael Mossinghoff Davidson College ICERM Brown University July 21-25, 2014 Overview Three


  1. Challenges in 21st Century Experimental Mathematical Computation Polynomials, Number Theory, and Experimental Mathematics Michael Mossinghoff � Davidson College ICERM � Brown University � July 21-25, 2014

  2. Overview • Three experimental investigations. • Highlight facets of experimental approach.

  3. 1. Refining Directions in Research

  4. Barker Sequences • a 0 , a 1 , ..., a n − 1 : finite sequence, each ±1. • For 0 ≤ k ≤ n − 1, define the k th aperiodic autocorrelation by n − k − 1 X c k = a i a i + k . i =0 • k = 0: peak autocorrelation. • k > 0: o ff -peak autocorrelations. • Goal: make o ff -peak values small. • Barker sequence : | c k | ≤ 1 for k > 0.

  5. Polynomials n − 1 X a k z k . • Let f ( z ) = k =0 • Erdös, Littlewood, Newman, Mahler: Do there exist polynomials with all ±1 coe ffi cients that remain flat over the unit circle? • A long Barker sequence would be much flatter than best known polynomials.

  6. All(?) Barker Sequences n Sequence + 1 ++ 2 ++- 3 +++- 4 +++-+ 5 +++--+- 7 +++---+--+- 11 +++++--++-+-+ 13 • Turyn & Storer (1961): No more of odd length.

  7. Properties • n = 4 m 2 , with m odd. • Each prime divisor of m is 1 mod 4. • m must satisfy certain complicated conditions. • For each p | m , one requires either • q p − 1 ≡ 1 mod p 2 for some prime q | m , or • p | q − 1 for some prime q | m . • Former: ( q , p ) is a Wieferich prime pair . • Rare! q = 5: only p = 53471161, 6692367337, 188748146801 up to 10 17 .

  8. Lower Bounds • Leung & Schmidt (2005): m > 5 ⋅ 10 10 , so n > 10 22 . • No plausible value known in 2005! • Do any exist?? Experiment!

  9. Search Strategy • Wish to find all permissible m ≤ M . • Create a directed graph, D = D ( M ). • Vertices: subset of primes p ≤ M . • Directed edge from q to p in two cases: • q p − 1 ≡ 1 mod p 2 and pq ≤ M . • p | ( q − 1) and pq ≤ M . • Need a subset of vertices where each indegree is positive in the induced subgraph.

  10. Results • M. (2009): If a Barker sequence of length n > 13 exists, then either n = 189 260 468 001 034 441 522 766 781 604, n > 2 ⋅ 10 30 . or • Leung & Schmidt (2012): Two new restrictions for the Barker problem.

  11. Results • Leung & Schmidt (2012): If a Barker sequence of length n > 13 n > 2 ⋅ 10 30 . exists, then

  12. More Recent Result • Theorem (P. Borwein & M., 2014): If n > 13 is the length of a Barker sequence, then either n = 3 979 201 339 721 749 133 016 171 583 224 100, or n > 4 ⋅ 10 33 . 5 138200401 13 138200401 13 41 2953 41 2953 29 • Large list of additional plausible values.

  13. 53 13 89 37 12197 97 4794006457 149 76704103313 268693 3049 41 349 29 99995507756741087451736040784945981261228240243352 81106341441590852061005613123255433352037667736004

  14. 5.0 4.5 4.0 3.5 I c e r m 3.0 2.5 0.0 0.1 0.2 0.3 0.4 0.5

  15. 2. Discovering Identities

  16. Mahler’s Measure n n a k z k = a n X Y • f ( z ) = ( z − β k ) in Z [ z ]. k =0 k =1 n Y • M ( f ) = | a n | max { 1 , | β k |} . k =1 • (Kronecker, 1857) M ( f ) = 1 ⇔ f ( z ) is a product of cyclotomic polynomials, and a power of z . • Lehmer’s problem (1933): Is there a constant c > 1 so that if M ( f ) > 1 then M ( f ) ≥ c ? • M ( z 10 + z 9 – z 7 – z 6 – z 5 – z 4 – z 3 + z +1) = 1.17628… .

  17. Measures and Heights • Height of f : H ( f ) = max{| a k | : 0 ≤ k ≤ n }. • For r > 1, let A r denote the complex annulus A r = { z ∊ C : 1/ r < | z | < r }. • If H ( f ) = 1 and f ( β ) = 0 ( β ≠ 0) then β ∊ A 2 . • Bloch & Pólya (1932), Pathiaux (1973): If M ( f ) < 2 then there exists F ( z ) with H ( F ) = 1 and f ( z ) | F ( z ).

  18. Newman Polynomials • All coe ffi cients 0 or 1, and constant term 1. • Odlyzko & Poonen (1993): If f ( z ) is a Newman polynomial and f ( β ) = 0, then β ∊ A τ , where τ denotes the golden ratio.

  19. Newman Polynomials • All coe ffi cients 0 or 1, and constant term 1. • Odlyzko & Poonen (1993): If f ( z ) is a Newman polynomial and f ( β ) = 0, then β ∊ A τ , where τ denotes the golden ratio. • Is there a constant σ so that if M ( f ) < σ then there exists Newman F ( z ) with f ( z ) | F ( z )? • Assume f ( z ) has no positive real roots. • Can we take σ = τ ?

  20. Degree Measure Newman Half of Coe ffi cients ++000+ 10 1.17628 13 ++++++0+000000000+000000000 18 1.18836 55 +00+0+00000000 14 1.20002 28 +00+0++++ 18 1.20139 19 ++0000000+ 14 1.20261 20 ++++0+00+0+ 22 1.20501 23 +0+000000000000+0 28 1.20795 34 ++0000000 20 1.21282 24 +0+0+000000+0+000 20 1.21499 34 ++0000000 10 1.21639 18 +000++0++++ 20 1.21839 22 +++++0000000++0000000 24 1.21885 42 +00+0+0++0+0+00000 24 1.21905 37 ++++++000+0000000000000 18 1.21944 47 ++000++0000+00000000000 18 1.21972 46 34 1.22028 95 ++++++++++++++0+++++++++000000000+00000000000000

  21. Pisot and Salem Numbers • A real algebraic integer β < –1 is a ( negative ) Pisot number if all its conjugates β ´ have | β ´| < 1. • All such numbers > – τ are known: four infinite families and one sporadic. • A ( negative ) Salem number is a real algebraic integer α < –1 whose conjugates all lie on the unit circle, except for 1/ α . • Salem: If f ( z ) is the min. poly. of a Pisot number β of degree n , then z m f ( z ) ± z n f (1/ z ) has a Salem number α m as a root (for large m ) and α m → β .

  22. Experimental Investigations • Can we represent small negative Pisot and Salem numbers with Newman polynomials? • Given f ( z ), determine if there is a Newman polynomial F ( z ) so deg( F ) = N and f ( z ) | F ( z ). • Sieving strategy: f ( k ) must divide F ( k ) for several k .

  23. Q + 5 , 4 ( z ) ( z − 1) 2 = 1 + 3 z + 4 z 2 + 5 z 3 + 6 z 4 + 6 z 5 + 5 z 6 + 4 z 7 + 3 z 8 + z 9 ++0+0+++++0+++0+++++0+0++ ++0+0+++0000+++++++0000+++0+0++ ++0+0+00+00++0+++++0++00+00+0+0++ ++0+0+++++0+0000+0000+0+++++0+0++ ++0+0+++00++000+++000++00+++0+0++ ++0+0+00+0++0+0+0+0+0+0++0+00+0+0++ ++0+0+++00++000+00+00+000++00+++0+0++ ++0+0+++0000+00+0+++0+00+0000+++0+0++ ++0+0+++0000++00+0+0+00++0000+++0+0++ ++0+0+00+++0+00000+++00000+0+++00+0+0++ ++0+0+00+000000+++0+++0+++000000+00+0+0++ ++0+0+00+00++000+0+0+0+0+000++00+00+0+0++ ++0+0+00+++0+00000+00+00+00000+0+++00+0+0++ 5 , 4 ( z )( z 24 − 1)( z 5 + 1) Q + ( z 8 − 1)( z 6 − 1)( z 2 − 1) ,

  24. • Leads to ( m odd, n even): z n +1 + 1 Q + z ( m +2 n +1)( n +2) / 2 − 1 � � � � m,n ( z ) = ( z m +2 n +1 − 1)( z n +2 − 1)( z 2 − 1) ✓ m − 3 n + m − 1 ◆✓ n/ 2 2 2 ◆ z ( z n + 1) X X X z 2 k z k ( m +2 n +1) z k ( n +2) . + k =0 k =0 k =0 • m , n both odd: Q + z ( m + n )( m − 1) / 2 − 1 � � m,n ( z ) ( z m + n − 1)( z m − 1 − 1)( z 2 − 1) m + n ✓ n − 3 ◆✓ m − 3 − 1 2 2 2 ◆ X z k ( m − 1) + z X X z 2 k z k ( m + n ) = . k =0 k =0 k =0

  25. Results Theorem (Hare & M., 2014): If β is a negative Pisot number with β > − τ , and β has no positive real conjugates, then there exists a Newman polynomial F ( z ) with F ( β ) = 0. Theorem (H. & M.): If α > − τ is a negative Salem number arising from Salem’s construction on the minimal polynomial of a negative Pisot number β > − τ , then there exists a Newman polynomial F ( z ) with F ( α ) = 0.

  26. omplex Pisot

  27. 3. Opening New Avenues

  28. A Bit of Number Theory • Prime Number Theorem: Z x dt x π ( x ) ∼ Li( x ) = log x. log t ∼ 2 • Riemann Hypothesis: � √ x log x � | π ( x ) − Li( x ) | = O . • Riemann zeta function: 1 1 − p − s � − 1 . X Y � ζ ( s ) = n s = n ≥ 1 p

  29. • Zeros of ζ ( s ) ↔ Distribution of primes. • Nontrivial zeros of ζ ( s ) lie in “critical strip,” 0 < Re( s ) < 1. • PNT ↔ No zeros on Re( s ) = 1. • RH ↔ All nontrivial zeros on Re( s ) = 1/2. • Zero-free region in critical strip ↔ Information on distribution of primes.

  30. • Best known zero-free region (Vinogradov): ζ ( σ + it ) ≠ 0 if 1 σ > 1 − R 1 (log | t | ) 2 / 3 (log log | t | ) 1 / 3 . • Explicit version (Ford 2002): R 1 = 57.54. 1 • Other bounds: σ > 1 − R 0 log | t | . • Explicit versions: Better for small | t |. • Crossover around exp(10000).

  31. Improvements in R 0 de la Vallee Poussin 1899 30.468 (1 + cos y ) 2 Westphal 1938 17.537 (1 + cos y ) 2 ( . 3 + cos y ) 2 Rosser & Schoenfeld 1975 9.646 Ford 2000 8.463 ( . 91 + cos y ) 2 ( . 265 + cos y ) 2 Kadiri 2005 5.697 • Common thread: employing nonnegative, even trigonometric polynomial. • Above: all degree ≤ 4. Can we do better?

  32. Requirements n X • Let f ( y ) = a k cos( ky ). k =0 n 2 � b k e iky � X • Need f ( y ) ≥ 0 for all y , so really f ( y ) = . � � � � k =0 • Let A = a 1 + · · · + a n . • Need each a k ≥ 0, a 1 > a 0 , and A not too large. • Kadiri: 10 . 91 + 18 . 63 cos( y ) + 11 . 45 cos(2 y ) + 4 . 7 cos(3 y ) + cos(4 y ) .

  33. Experimental Strategy • Select degree, n . • Select bounding box for initial selection of b k ’s. • Begin at random location. • Anneal based on objective function. • In addition: extra care with error term in Kadiri analysis.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend