polarization at nlo in wz production at the lhc
play

Polarization at NLO in WZ production at the LHC 54th Rencontres de - PowerPoint PPT Presentation

Institut fr Theoretische Physik Polarization at NLO in WZ production at the LHC 54th Rencontres de Moriond EW Session, La Thuile [in collaboration with LE Duc Ninh, arXiv:1810.11034 (to appear in JHEP)] 17 March 2019, Julien Baglio


  1. Institut für Theoretische Physik Polarization at NLO in WZ production at the LHC 54th Rencontres de Moriond EW Session, La Thuile [in collaboration with LE Duc Ninh, arXiv:1810.11034 (to appear in JHEP)] 17 March 2019, Julien Baglio

  2. Motivation � pp → WZ → 3 ℓ + ν important process at the LHC: triple-gauge coupling studies, new physics searches � High statistics � precision! � Search for hints of new physics: polarization observables can be important � Good understanding of theoretical AND experimental errors needed ⇒ higher-order predictions! 1/13 | J. Baglio Polarization at NLO in WZ production at the LHC Moriond EW Session, 17/3/2019

  3. Status of pp → WZ + X � Next-to-leading order (NLO) QCD: [Ohnemus 1991]; [Frixione, Nason, Ridolfi 1992] � NLO electroweak (EW) on-shell: [Bierweiler, Kasprzik, Kühn 2013]; [ J.B. , Ninh, Weber 2013 (with q γ induced)] � Next-to-next-to-leading order QCD: including off-shell effects [Grazzini, Kallweit, Rathlev, Wiesemann 1604.08576, 1703.09065] � Full NLO EW off-shell: [Biedermann, Denner and Hofer 1708.06938] Focus of the talk: polarization observables calculated at NLO QCD (with VBFNLO ) + NLO EW in the double-pole approximation (DPA) Latest experimental results: ATLAS paper arXiv:1902.05759 with measurements of gauge boson polarization! 2/13 | J. Baglio Polarization at NLO in WZ production at the LHC Moriond EW Session, 17/3/2019

  4. W ± Z production at the LHC e � Intial beams: Unpolarized � Only left-handed quarks interact with W (max. asymmetry) � Z interacts with both left- and right-handed quarks, but with different coupling strength: e e g f W R = − ( s W Q f ) / c W , q q W g f L = ( I 3 f − s 2 W Q f ) / ( s W c W ) . W � W and Z produced at the LHC q q are polarized! 3/13 | J. Baglio Polarization at NLO in WZ production at the LHC Moriond EW Session, 17/3/2019

  5. Double-pole approximation (DPA) DPA amplitude at LO: A W → ℓ 1 ν A Z → ℓ 2 ℓ 3 A ab → WZ � A ab → WZ → 3 ℓν LO LO LO = , LO,DPA Q 1 Q 2 λ 1 ,λ 2 Q i = q 2 i − M 2 V i + iM V i Γ V i , i = 1 , 2 . For NLO EW in the DPA: � Virtual + Real corrections to production part included ✧ � Virtual + Real corrections to decays included ✧ � Quark-photon induced q γ → WZq ′ → 3 ℓν q ′ included ✧ � Non-factorizable contribution not included ✪ � Off-shell effects not included ✪ EW corrections to production and decay parts separated In this presentation: LO and NLO QCD exact, NLO EW calculated in the DPA 4/13 | J. Baglio Polarization at NLO in WZ production at the LHC Moriond EW Session, 17/3/2019

  6. NLO EW: DPA vs. full calculation Full NLO EW from [Biedermann, Denner, Hofer arXiv:1708.06938] p s = 13TeV | ATLASfid pp → e + ν e µ + µ − | 10 0 10 1 NLOQCD 10 − 1 10 0 LO [ µ + µ − e + ν e ] NLOQCDEW LO [ µ + µ − e − ¯ ν e ] NLO EW [ µ + µ − e + ν e ] LO 10 -1 NLO EW [ µ + µ − e − ¯ 10 − 2 ν e ] � GeV [fb/GeV] fb � 10 -2 d p T , e ± 10 − 3 d σ 10 -3 10 − 4 10 -4 √ s = 13 TeV, TGC setup 10 − 5 10 -5 40 K NLOQCD 5 30 3 20 1 10 δ [%] qq ′ [ µ + µ − e + ν e ] δ ¯ 30 δ qγ [ µ + µ − e + ν e ] 0 qq ′ [ µ + µ − e − ¯ δ EW [%] δ ¯ ν e ] 10 δ DPA δ DPA δ ¯ δ qγ δ qγ [ µ + µ − e − ¯ qq ′ qq ′ ν e ] ¯ qγ − 10 10 30 − 20 − 30 100 200 300 400 500 600 0 100 200 300 400 500 600 p T, e [GeV] p T , e ± [GeV] Excellent agreement! ⇒ DPA is an efficient tool to get reliable NLO EW results in a fast way 5/13 | J. Baglio Polarization at NLO in WZ production at the LHC Moriond EW Session, 17/3/2019

  7. Angular coefficients See [Gounaris et al 1993; Aguilar-Saavedra, Bernabeu, arXiv:1508.04592; Aguilar-Saavedra et al, arXiv:1701.03115] Parameterize the differential cross section in the DPA with � d σ 3 1 ( 1 + cos 2 θ ) + A 0 2 ( 1 − 3 cos 2 θ ) + A 1 sin ( 2 θ ) cos φ σ d cos θ d φ = 16 π 1 2 sin 2 θ cos ( 2 φ ) + A 3 sin θ cos φ + A 4 cos θ + A 2 � + A 5 sin 2 θ sin ( 2 φ ) + A 6 sin ( 2 θ ) sin φ + A 7 sin θ sin φ � In the DPA, link to the spin-density matrix ρ of the W and Z , all spin information there ⇒ 8 (pseudo-)observables! � A 5 , A 6 , A 7 from imaginary parts of spin-density ρ � expected to be very small 4 linked to L-R asymmetry in Z ∗ → ℓ + ℓ − decay � A Z 3 , A Z 6/13 | J. Baglio Polarization at NLO in WZ production at the LHC Moriond EW Session, 17/3/2019

  8. Coordinate systems x’ z’ P’ 1 p’ p’ p P’ p P’ P’ 1 V 2 2 V z’ x’ Collins−Soper Helicity y’ y’ � Collins-Soper (CS) coordinate system [Collins, Soper, 1977] : z ′ bisector of � 1 and − � P ′ P ′ 2 , points into the hemisphere of � p V (in lab frame) � Helicity (HE) coordinate system [Bern et al, arXiv:1103.5445] : z ′ = � p V , Lab Side-note: ATLAS uses a modified helicity c.s. with z ′ = � p V , WZ − c . m ⇒ Z polarization observables contaminated by missing E T ! 7/13 | J. Baglio Polarization at NLO in WZ production at the LHC Moriond EW Session, 17/3/2019

  9. Polarization fractions Notation: e = 3, µ − = 6, θ i = ∠ ( � p ′ z ′ ) in V rest frame, ℓ i ,� c = ( g 2 L − g 2 R ) / ( g 2 L + g 2 R ) d σ � � ≡ 3 + 2 sin 2 θ 3 f W ± ( 1 ∓ cos θ 3 ) 2 f W ± + ( 1 ± cos θ 3 ) 2 f W ± L R 0 σ d cos θ 3 8 d σ ≡ 3 � ( 1 + cos 2 θ 6 + 2 c cos θ 6 ) f Z L + ( 1 + cos 2 θ 6 − 2 c cos θ 6 ) f Z R σ d cos θ 6 8 � + 2 sin 2 θ 6 f Z 0 leading to L = 1 R = 1 0 = 1 f V 4 ( 2 − A V 0 + d V A V 4 ) , f V 4 ( 2 − A V 0 − d V A V 4 ) , f V 2 A V 0 , R = d V d Z = 1 f V L − f V 2 A V 4 , c , d W ± = ∓ 1 � f L + f R + f 0 = 1 � Values of f L , f R depend on reference frame and coordinate system 8/13 | J. Baglio Polarization at NLO in WZ production at the LHC Moriond EW Session, 17/3/2019

  10. Fiducial polarization observables Relate polarization coefficients to simple observables Expectations: � 1 d cos θ f ( θ ) 1 d σ � f ( θ ) � = d cos θ, σ − 1 � 1 � 2 π d φ f ( θ, φ ) 1 d σ � f ( θ, φ ) � = d cos θ d cos θ d φ. σ − 1 0 Now use DPA angular decomposition + expectations to get fiducial polarization observables as L = − 1 2 + d V � cos θ 6 � + 5 2 < cos 2 θ 6 >, f V A 1 = � 5 sin 2 θ cos φ � , . . . For distributions: σ → d σ/ dp T , V , or d σ/ d η V , ... � Differential xs with arbitrary cuts, full ME [see also Stirling, Vryonidou, arXiv:1204.6427] � In the DPA limit: equivalent to the inclusive polarization observables In the fiducial case, the 8 A i no longer describe the full differential xs � Fiducial observables nonetheless contain spin information AND are measurable (data already there!) 9/13 | J. Baglio Polarization at NLO in WZ production at the LHC Moriond EW Session, 17/3/2019

  11. W angular coefficients ( e + ) 13 TeV results with ATLAS fiducial cuts: Method A 0 A 1 A 2 A 3 A 4 1 . 026 ( 2 ) + 5 − 6 − 0 . 286 ( 2 ) + 4 − 3 − 1 . 314 ( 2 ) + 3 − 3 − 0 . 251 ( 2 ) + 2 − 2 − 0 . 447 ( 7 ) + 3 HE LO − 3 HE NLOEW 1 . 028 − 0 . 284 − 1 . 324 − 0 . 252 − 0 . 438 1 . 016 ( 1 ) + 3 − 4 − 0 . 326 ( 2 ) + 2 − 3 − 1 . 413 ( 2 ) + 10 − 12 − 0 . 229 ( 1 ) + 2 − 1 − 0 . 295 ( 7 ) + 11 HE NLOQCD − 11 HE NLOQCDEW 1 . 017 − 0 . 326 − 1 . 420 − 0 . 229 − 0 . 287 Method A 0 A 1 A 2 A 3 A 4 1 . 397 ( 3 ) + 4 − 5 0 . 229 ( 1 ) + 3 − 3 − 0 . 945 ( 1 ) + 2 − 2 0 . 003 ( 2 ) + 0 . 3 − 0 . 613 ( 8 ) + 4 CS LO − 1 − 4 CS NLOEW 1 . 402 0 . 225 − 0 . 952 0 . 008 − 0 . 608 1 . 513 ( 3 ) + 7 − 7 0 . 192 ( 1 ) + 2 − 2 − 0 . 918 ( 3 ) + 2 0 . 061 ( 4 ) + 4 − 0 . 469 ( 6 ) + 10 CS NLOQCD − 2 − 4 − 10 CS NLOQCDEW 1 . 518 0 . 189 − 0 . 921 0 . 065 − 0 . 463 � PDF and scale errors very small � EW corrections negligible � Results depend on coordinate system 10/13 | J. Baglio Polarization at NLO in WZ production at the LHC Moriond EW Session, 17/3/2019

  12. Z angular coefficients ( µ − ) 13 TeV results with ATLAS fiducial cuts: Method A 0 A 1 A 2 A 3 A 4 1 . 035 ( 2 ) + 2 − 2 − 0 . 304 ( 1 ) + 2 − 1 − 0 . 705 ( 1 ) + 0 . 3 0 . 063 ( 1 ) + 0 . 04 − 0 . 017 ( 1 ) + 1 HE LO − 1 − 0 . 1 − 1 HE NLOEW 1 . 039 − 0 . 307 − 0 . 717 0 . 050 − 0 . 020 0 . 985 ( 2 ) + 5 − 6 − 0 . 306 ( 1 ) + 4 − 0 . 734 ( 1 ) + 2 0 . 031 ( 1 ) + 2 0 . 003 ( 1 ) + 1 HE NLOQCD − 3 − 2 − 2 − 1 HE NLOQCDEW 0 . 986 − 0 . 308 − 0 . 742 0 . 023 0 . 001 Method A 0 A 1 A 2 A 3 A 4 1 . 254 ( 2 ) + 2 − 3 0 . 239 ( 2 ) + 2 − 2 − 0 . 488 ( 1 ) + 1 − 1 − 0 . 061 ( 0 . 3 ) + 0 . 03 0 . 035 ( 1 ) + 1 CS LO − 0 . 4 − 1 CS NLOEW 1 . 266 0 . 234 − 0 . 493 − 0 . 053 0 . 023 1 . 267 ( 2 ) + 4 − 4 0 . 221 ( 1 ) + 1 − 1 − 0 . 455 ( 2 ) + 2 − 0 . 021 ( 1 ) + 3 0 . 023 ( 1 ) + 1 CS NLOQCD − 2 − 3 − 1 CS NLOQCDEW 1 . 273 0 . 218 − 0 . 457 − 0 . 016 0 . 016 � PDF and scale errors very small � EW corrections important in A 3 and A 4 , sensitive to c Origin: EW corrections to Z → µ + µ − decay � Results depend on coordinate system 11/13 | J. Baglio Polarization at NLO in WZ production at the LHC Moriond EW Session, 17/3/2019

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend