full nlo corrections to 3 jet production and r 32 at the
play

Full NLO corrections to 3-jet production and R 32 at the LHC Max - PowerPoint PPT Presentation

Full NLO corrections to 3-jet production and R 32 at the LHC Max Reyer University of Freiburg (University of G ottingen) Eur. Phys. J. C79 no. 4, (2019) 321 arXiv:1902.01763 [hep-ph] In collaboration with Steffen Schumann Marek Sch


  1. Full NLO corrections to 3-jet production and R 32 at the LHC Max Reyer University of Freiburg (University of G¨ ottingen) Eur. Phys. J. C79 no. 4, (2019) 321 arXiv:1902.01763 [hep-ph] In collaboration with Steffen Schumann Marek Sch¨ onherr Loopfest XVIII @ Fermilab August 13th, 2019

  2. Outline Motivation EW NLO Calculation Setup 3/2jet Production Results and R 32 Full NLO corrections to 3-jet production and R32 at the LHC Max Reyer (Univ. Freiburg) 1/14

  3. Motivation jet production: • most abundant process at LHC ⇒ allows multi-differential measurements into high- p T regions ⇒ benchmark for theoretical predictions • important SM background to many analyses • pure jet final state is BSM search ground ⇒ enhancements in high p T -tails • determination of PDFs and α s at high Q 2 ⇒ consistency check of RGE evolution over large range of scales EW corrections: • naˆ ıve relative magnitude of α ∼ 1% to inclusive XS • weak Sudakov logarithms ⇒ O (10%) corr in TeV range ⇒ inclusion necessitated by high p T reach • many subprocesses, all dipole kinematics and types involed ⇒ strong test case for automized NLO tools Full NLO corrections to 3-jet production and R32 at the LHC Max Reyer (Univ. Freiburg) 2/14

  4. Previous Studies of Jet Production • NLO QCD up to 5 final state jets [Ellis et al. , 1992] [Bern et al. , 2012] [Giele et al. , 1993] [Badger et al. , 2014] [Nagy, 2003] • NLO QCD combined with parton showers [Alioli et al. , 2011] [H¨ oche et al. , 2012] • NNLO QCD dijet completed [Currie et al. , 2016] [Ridder et al. , 2019] [Currie et al. , 2017] [Czakon et al. , 2019] (full color) • pure weak corrections for dijet (no γ ; O � α 2 � � α 2 � s α , O ( α s α ), O ) [Dittmaier et al. , 2012] • full SM NLO for dijet [Frederix et al. , 2017] • full SM NLO for 3jet, inclusive cross section [Frederix et al. , 2018] here: full SM NLO for 3/2jet, (double) differential in Sherpa Full NLO corrections to 3-jet production and R32 at the LHC Max Reyer (Univ. Freiburg) 3/14

  5. Features of EW NLO Massive W ± and Z : Massless photons γ : • IR divergences necessitate • real emission distinct process class subtraction • IR finite loop contributions: ⇒ descends from QCD via � Q 2 � ∼ α log 2 , T ( ij ) ˆ ˆ T k → Q ( ij ) Q k m 2 • add γ to jet clustering ⇒ Sudakov logs ∼ 10% @ 1TeV • unambiguous definition of NLO correction by perturbative order: O L α n s α m N E W D C N Q L O α n − 1 α m α n s α m − 1 s ⇒ simultaneous QCD and QED subtraction with distinct underlying Borns r . QCD subtr. b t s u D X + g + γ E Q final state X + g X + γ ⇒ forces γ in process definition • photon jet removal desired, requires e.g. fragmentation functions Full NLO corrections to 3-jet production and R32 at the LHC Max Reyer (Univ. Freiburg) 4/14

  6. Automation of EW NLO • public full SM one-loop provider are becoming available • Recola • OpenLoops2 • GoSam ⇒ paving road for automatic SM NLO event generator ⇒ already public: MadGraph5 aMC@NLO [Frederix et al. , 2018] ⇒ still-private version of Sherpa [Sch¨ onherr, 2018] • bookkeeping in mixed coupling scenario • tree level ME • simultaneous QCD&QED subtraction: dipole terms, I-operators, ... • (approximate) procedures for combination with PS Validated in growing set of processes Sherpa + GoSam • γγ W and γγ Z [Greiner et al. ] Sherpa + OpenLoops • γγ j [Chiesa et al. ] • V + jets [Kallweit et al. , 2015] Sherpa + Recola [Kallweit et al. , 2016] • 2 ℓ 2 ν • V + j , t ¯ tH , e + e − µ + µ − [Kallweit et al. , 2017] • t ¯ t + jets [Biedermann et al. , 2017] [G¨ utschow et al. , 2018] • off-shell WWW [Sch¨ onherr, 2018] (approximate multijet merging) Full NLO corrections to 3-jet production and R32 at the LHC Max Reyer (Univ. Freiburg) 5/14

  7. Calculation Setup - Process Definition • partonic processes [ ewj ∈ { q , g , γ, l , ν } → no external W , Z !] 3 jet : ewj + ewj → ewj + ewj + ewj (+ ewj ) , 2 jet : ewj + ewj → ewj + ewj (+ ewj ) , • perturb. orders α n s α m 3 jet : m + n = 3 , 4 2 jet : m + n = 2 , 3 , • sensitive to full SM spectrum (tops, Higgs, . . . ) O ( α 4 O ( α 3 O ( α 2 s α 2 ) O ( α s α 3 ) O ( α 4 ) s ) s α ) Full NLO corrections to 3-jet production and R32 at the LHC Max Reyer (Univ. Freiburg) 6/14

  8. Calculation Setup - Input and Observable • Sherpa interfaced to Recola • pp @ 13 TeV, PDF: NNPDF31 nlo as 0118 luxqed 2 ˆ • scale choice µ R = µ F = 1 H T ⇒ missing higher orders estimated by 7 point scale variation • G µ scheme ⇒ mass logs from γ → f ¯ f splittings absorbed • complex mass scheme jet def and fiducial phase space cuts: • 3 resp. 2 democratic anti- k T jets with R = 0 . 4 and [no ν !] p i ≥ 2 p 1 | η | < 2 . 8; T ≥ 80GeV , ≥ 60GeV T • reject ’lepton jets’: | η j | < 2 . 5 and net lepton number ⇒ collinear same-flavor lepton pairs survive (IR safety!) ⇒ leptons outside tracker survive Full NLO corrections to 3-jet production and R32 at the LHC Max Reyer (Univ. Freiburg) 7/14

  9. XS Nomenclature • nomenclature for n -jet XS: � � � � σ LO i σ ∆NLO i = α n +1 − i = α n − i α i , α i , O O s s nj nj • combination of QCD and EW NLO: σ NLO QCD+EW = σ LO 0 + σ ∆NLO 0 + σ ∆NLO 1 additive: nj nj nj nj � σ ∆NLO 0 � � σ ∆NLO 1 � σ NLO QCD × EW = σ LO 0 nj nj multiplicative: 1 + 1 + nj nj σ LO 0 σ LO 0 nj nj • estimate of unknown O ( α s α ) NNLO corrections: QCD+EW = δσ NLO QCD × δσ NLO EW σ NLO QCD × EW − σ NLO σ LO Full NLO corrections to 3-jet production and R32 at the LHC Max Reyer (Univ. Freiburg) 8/14

  10. p T -Spectra LO QCD NLO QCD×EW LO QCD NLO QCD×EW LO QCD NLO QCD×EW NLO QCD NLO QCD NLO QCD NLO QCD+EW full NLO NLO QCD+EW full NLO NLO QCD+EW full NLO 10 2 10 2 10 2 p 1 T , 3j p 2 T , 3j p 3 T , 3j 10 0 | i | < 2.8 | i | < 2.8 | i | < 2.8 10 0 10 0 T [pb/GeV] p 1 T [pb/GeV] p 1 T [pb/GeV] p 1 T > 80 GeV T > 80 GeV T > 80 GeV 10 2 p 2, 3 > 60 GeV 10 2 p 2, 3 > 60 GeV p 2, 3 > 60 GeV 10 2 T T T 10 4 10 4 d /d p 1 10 4 d /d p 2 d /d p 3 10 6 10 6 10 6 10 8 10 8 10 8 2.75 2.25 2.50 1.75 2.00 2.25 2.00 1.75 1.50 Ratio over NLO QCD Ratio over NLO QCD Ratio over NLO QCD 1.75 1.50 1.50 1.25 1.25 1.25 1.00 1.00 1.00 0.75 0.75 0.75 0.50 0.50 0.25 0.50 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 p 1 T [GeV] p 2 T [GeV] p 3 T [GeV] • large negative Sudakov-type EW NLO corrections ⇒ grow with i in p i T ( − 10% , − 15% , − 15% at 2TeV) • scale uncertainties asymmetric, grow from QCD to QCD+EW • accidental cancellation with subleading LO and NLO contributions • mainly ∆NLO 2 , LO 1 , LO 2 • grow larger than ∆NLO 1 for p T > 2 . 5TeV ⇒ highly dependent on observable & fiducial phase space Full NLO corrections to 3-jet production and R32 at the LHC Max Reyer (Univ. Freiburg) 9/14

  11. p T -Spectra LO 0 ( s ) 3 NLO 0 ( s ) 4 NLO 4 ( 4 ) LO 0 ( s ) 3 NLO 0 ( 4 s ) NLO 4 ( 4 ) LO 0 ( 3 s ) NLO 0 ( s ) 4 NLO 4 ( 4 ) LO 1 ( 2 1 ) NLO 1 ( 3 1 ) LO 1 ( 2 1 ) NLO 1 ( 3 1 ) LO 1 ( 2 1 ) NLO 1 ( 3 1 ) s s s s s s LO 2 ( 1 2 ) NLO 2 ( 2 2 ) LO 2 ( 1 2 ) NLO 2 ( 2 2 ) LO 2 ( 1 2 ) NLO 2 ( 2 2 ) s s s s s s LO 3 ( 3 ) NLO 3 ( 1 3 ) LO 3 ( 3 ) NLO 3 ( 1 3 ) LO 3 ( 3 ) NLO 3 ( 1 3 ) full NLO full NLO full NLO s s s 10 3 10 3 10 1 10 1 10 1 p 1 T , 3j p 2 T , 3j p 3 T , 3j | i | < 2.8 | i | < 2.8 | i | < 2.8 10 1 10 1 10 1 T [pb/GeV] p 1 T > 80 GeV T [pb/GeV] p 1 T > 80 GeV T [pb/GeV] p 1 T > 80 GeV 10 3 p 2, 3 > 60 GeV 10 3 p 2, 3 > 60 GeV p 2, 3 > 60 GeV 10 3 T T T 10 5 10 5 10 5 d /d p 1 d /d p 2 d /d p 3 10 7 10 7 10 7 10 9 10 9 10 9 10 11 10 11 10 11 10 0 10 0 10 0 10 1 10 1 Ratio over full NLO Ratio over full NLO Ratio over full NLO 10 1 10 2 10 2 10 2 10 3 10 3 10 3 10 4 10 4 10 5 4 10 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 p 1 T [GeV] p 2 T [GeV] p 3 T [GeV] • large negative Sudakov-type EW NLO corrections ⇒ grow with i in p i T ( − 10% , − 15% , − 15% at 2TeV) • scale uncertainties asymmetric, grow from QCD to QCD+EW • accidental cancellation with subleading LO and NLO contributions • mainly ∆NLO 2 , LO 1 , LO 2 • grow larger than ∆NLO 1 for p T > 2 . 5TeV ⇒ highly dependent on observable & fiducial phase space Full NLO corrections to 3-jet production and R32 at the LHC Max Reyer (Univ. Freiburg) 9/14

  12. R 32 Observable T ) = d σ 3 j / d H (2) R 32 ( H (2) T d σ 2 j / d H (2) T • reduced experimental uncertainties ⇒ e.g. luminosity, jet energy scale • factorizing contributions in theory predictions cancel • strongly dependent on α s ( H (2) T ) ⇒ allows for measurement [Chatrchyan et al. , 2013] (fit of theory predictions to data) ⇒ consistency check of RGE evolution at high scales ⇒ possibly sensitive to BSM physics [Becciolini et al. ] • sensitive to gluon PDF Full NLO corrections to 3-jet production and R32 at the LHC Max Reyer (Univ. Freiburg) 10/14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend