poisson algebras of block upper triangular bilinear forms
play

Poisson algebras of block-upper-triangular bilinear forms and braid - PowerPoint PPT Presentation

Poisson algebras of block-upper-triangular bilinear forms and braid group action Marta Mazzocco, Loughborough University Work in collaboration with Leonid Chekhov Typeset by Foil T EX 1 Bilinear forms on C N x, y := x T A y,


  1. Poisson algebras of block-upper-triangular bilinear forms and braid group action Marta Mazzocco, Loughborough University Work in collaboration with Leonid Chekhov – Typeset by Foil T EX – 1

  2. Bilinear forms on C N � x, y � := x T A y, ∀ x, y ∈ C N . = “ A block–upper– “Block–upper–triangular bilinear form” triangular”   A 1 , 1 A 1 , 2 . . . A 1 ,n A 2 , 2 . . . O A 2 ,n   A =  , A I,J ∈ GL ( m ) , det( A I,I ) = 1   . . . . . . . . . . . .    . . . O O A n,n A n,m ⊂ GL ( nm ) is the set of such bilinear forms. a k,l denote the entries of A . – Typeset by Foil T EX – 2

  3. Homogeneous quadratic Poisson bracket on GL N ( C ) , N = nm : � � { a i,j , a k,l } = sign( j − l ) + sign( i − k ) a i,l a k,j + � � � � + sign( j − k ) + 1 a j,l a i,k + sign( i − l ) − 1 a l,j a k,i • This bracket admits a Poisson reduction to A n,m for any n , m such that N = nm . • Admits a suitable action of Braid grorup preserving it. • Affine version and quantisation. – Typeset by Foil T EX – 3

  4. Why do we care? • Case m = 1 : Dubrovin–Ugaglia bracket appearing in Frobenius Manifold theory. Its quantization is also known as Nelson–Regge algebra in 2 + 1 -dimensional quantum gravity and as Fock–Rosly bracket in Chern–Simons theory. • Case m = 2 : its quantization is a Twisted Yangian associated to the Lie algebra sp 2 n . • Algebraic geometers are interested in the vanishing locus of quadratic Poisson algebras on Projective spaces (Hitchin 2011). – Typeset by Foil T EX – 4

  5. Poisson reductions: � � { a i,j , a k,l } = sign( j − l ) + sign( i − k ) a i,l a k,j + � � � � + sign( j − k ) + 1 a j,l a i,k + sign( i − l ) − 1 a l,j a k,i { a N, 1 , a k,l } = ( − 1+1) a N,l a k, 1 +( − 1+1) a 1 ,l a N,k +(1 − 1) a l, 1 a k,N , for k, l � = 1 , N, { a N, 1 , a 1 ,l } = a 1 ,l a N, 1 l � = 1 , N, for { a N, 1 , a N,l } = − a N, 1 a N,l l � = 1 , N, for In general: – Typeset by Foil T EX – 5

  6. Case m = 1 , Dubrovin–Ugaglia bracket { a i,j , a k,l } = (sign( i − l ) − sign( j − l ))( a l,j a k,i − a l,i a k,j ) + � � + sign( i − k ) − sign( j − k ) ( a k,j a i,l − a k,i a j,l ) Notation:   1 a 1 , 2 . . . a 1 ,n 0 1 . . . a 2 ,n   A =  ∈ A   . . . . . . . . . . . .    0 . . . 0 1 Braid group action in the context of Frobenius manifolds due to Dubrovin. – Typeset by Foil T EX – 6

  7. Bondal’s approach for m = 1 . • GL n ( C ) acts on bilinear forms as A �→ BAB T . ∀ A, B ∈ GL n ( C ) , • This action of GL ( C n ) does not preserve A . • For every A ∈ A we take a subset: B ∈ GL ( C n ) | A �→ BAB T ∈ A � � M A = . • We define a groupoid ( A , M ) = { ( A, B ) such that A ∈ A , B ∈ M A } M = ∪ A ∈A M A – Typeset by Foil T EX – 7

  8. Case m = 1 : groupoid structure. ( A , M ) = { ( A, B ) such that A ∈ A , BAB T ∈ A} Partial multiplication: ( B 1 AB T � � m 1 , B 2 ) , ( A, B 1 ) = ( A, B 2 B 1 ) . Identity morphism: e = ( A, 1 1) , Inverse: i : ( A, B ) → ( BAB T , B − 1 ) . – Typeset by Foil T EX – 8

  9. Case m = 1 : algebroid structure. Infinitesimal version of the condition BAB T ∈ A . Lie algebroid ( A , g ) : g ∈ gl n ( C ) , | A + Ag + g T A ∈ A � � g := ∪ A ∈A g A g A := . Natural isomorphism anchor map: D A : g A → T A A �→ Ag + g T A. g Bondal’s main idea: give a parameterization of all g ∈ g A . – Typeset by Foil T EX – 9

  10. Case m = 1 : Bondal’s parameterization of all g ∈ g A T A ∼ { strictly upper triangular matrices } T ∗ A ∼ { strictly lower triangular matrices } ⇒ Lemma: The following map P A : T ∗ A A → g A (1) �→ P − , 1 / 2 ( wA ) − P + , 1 / 2 ( w T A T ) , w where P ± , 1 / 2 are the projection operators: P ± , 1 / 2 a i,j := 1 ± sign( j − i ) a i,j , i, j = 1 , . . . , n, (2) 2 defines an isomorphism between the Lie algebroid ( g , D A ) and the Lie algebroid ( T ∗ A , D A P A ) . – Typeset by Foil T EX – 10

  11. Case m = 1 : Poisson structure The Lie algebroid ( T ∗ A , D A P A ) defines the Poisson bi-vector: C ∞ ( A ) Π : T ∗ A A × T ∗ A A → ( ω 1 , ω 2 ) Tr ( ω 1 D A P A ( ω 2 )) The Poisson structure is thus automatically invariant under groupoid action. The braid group elements are:   1 ... . . . 1   β i,i +1 A = B i,i +1 AB T   i a i,i +1 − 1 i,i +1 , B i,i +1 = .   i + 1 1 0 .   . . 1   ... 1 – Typeset by Foil T EX – 11

  12. Case m = 1 : Central elements i,i +1 and β i,i +1 A T = B i,i +1 A T B T Since β i,i +1 A = B i,i +1 AB T i,i +1 ⇒ the central elements are generated by A + λA T � � det � n � ⇒ central elements so that the symplectic leaves have dimension 2 n ( n − 1) � n � − 2 2 – Typeset by Foil T EX – 12

  13. General case: We keep the same Poisson bi–vector: C ∞ ( A ) Π : T ∗ A A × T ∗ A A → ( ω 1 , ω 2 ) Tr ( ω 1 D A P A ( ω 2 )) ⇒ we keep the structure P A D A T ∗ A A n,m → → T A A n,m g A �→ P − , 1 / 2 ( w A ) − P + , 1 / 2 ( w T A T ) A g + g T A w �→ where g A := Im( P A ) T A ∼ { upper block triangular matrices s.t. Tr( A − 1 J,J δA J,J ) = 0 } T ∗ A ∼ { lower block triangular matrices s.t. Tr( A − 1 J,J w J,J ) = 0 } dim (ker P A ) > 0 . – Typeset by Foil T EX – 13

  14. To find the braid group generators we need to find the groupoid ( A n,m , M ) which integrates ( A n,m , g ) . We deal with the case of full size matrices N × N . • dim( M ) = dim g = N 2 − � N � 2 • M ⊂ ∪ A ∈A N { B | B A B T ∈ A N } How to find the groupoid? Idea: it must preserve central elements. � N + 2 � A + λA T � � det generates independent central elements. 2 � N + 2 � N 2 − is not always even 2 – Typeset by Foil T EX – 14

  15. ⇒ We need more central elements. Insight: freedom of block upper triangular reduction. ⇒ The bottom left minors:   A N − d +1 , 1 . . . A N + d − 1 ,d . . . . M d := det . . . . .  ,    . . . A N, 1 A N,d must play a role. � N + 1 � b d := det M N − d / det M d , for d = 1 , . . . , , 2 are central elements.This leads to symplectic leaves of the dimension N 2 − N always even – Typeset by Foil T EX – 15

  16. General case Theorem The Lie groupoid M is M := U A ∈A n,m M A , where B ∈ GL N | B A B T ∈ A n,m and � M A := d ( A ) , ∀ d = 0 , . . . , [ m � b ( I ) d ( B A B T ) = b ( I ) 2 ] , I = 1 , . . . , n , The braid group generators are found as elementary elements of this groupoid. – Typeset by Foil T EX – 16

  17. General case: braid group action β I,I +1 [ A ] = B I,I +1 A B T I,I +1 , I = 1 , . . . , n − 1   E ...     . . . E     I,I +1 A − T A T − E I   I,I B I,I +1 = ,   A I,I A − T I + 1 O   I,I   . . .   E   ...     E – Typeset by Foil T EX – 17

  18. Affinisation [L. Chekhov, M.M. Advances 2010] Generating function: ∞ G i,j ( λ ) := G (0) G ( p ) G (0) � i,j λ − p , i,j + i,j = a i,j , p =1 the matrices G ( p ) are arbitrary full-size matrices. k k k G (1) ij j j j l l l G (2) G (0) ij ji i i i – Typeset by Foil T EX – 18

  19. � � sign( i − k ) − λ + µ {G i,j ( λ ) , G k,l ( µ ) } = G k,j ( λ ) G i,l ( µ ) + λ − µ � � sign( j − l ) + λ + µ + G k,j ( µ ) G i,l ( λ ) + λ − µ � � sign( j − k ) − 1 + λµ + G i,k ( λ ) G j,l ( µ ) + 1 − λµ � � sign( i − l ) + 1 + λµ + G l,j ( λ ) G k,i ( µ ) . 1 − λµ This is an abstract Poisson algebra whatever zero level we pick. – Typeset by Foil T EX – 19

  20. Affine case with m = 1 A further braid group generator: � T , B n, 1 ( λ − 1 ) � β n, 1 [ G ( λ )] = B n, 1 ( λ ) G ( λ ) (3) where   0 0 . . . 0 λ 0 1 0 . . . 0     . . ... ... . . . 0 . B n, 1 ( λ ) = .     . ... . 0 . 1 0     − λ − 1 0 . . . G (1) 0 n, 1 – Typeset by Foil T EX – 20

  21. Affine case with arbitrary m   λ A n,n A − T O n,n E     ... B n, 1 ( λ ) = (4)     E     � T A − T G (1) − λ − 1 E � n, 1 n,n – Typeset by Foil T EX – 21

  22. Quantisation: 1 ( λ ) R ( λ − 1 , µ ) T 1 G 2 ( µ ) = G 2 ( µ ) R ( λ − 1 , µ ) T 1 G 1 ( λ ) R ( λ, µ ) R ( λ, µ ) G � � E ii ⊗ E jj + ( q − 1 λ − qµ ) R ( λ, µ ) = ( λ − µ ) E ii ⊗ E ii + i � = j i + ( q − 1 − q ) λ E ij ⊗ E ji + ( q − 1 − q ) µ � � E ij ⊗ E ji i<j i>j • For m = 1 : twisted q –Yangian Y ′ q ( o n ) • Forf m = 2 : twisted q –Yangian Y ′ q ( sp 2 n ) . – Typeset by Foil T EX – 22

  23. Quantisation of braid group action, m = 2 : We need a quantum inverse: � a 11 a 12 � � � 1 a 22 ( q − 1 /q ) a 21 − a 12 A − 1 = for A = − q 2 a 21 a 21 a 22 a 11 qdet   E ...     . . . E     I,I +1 A − T q A T − q 2 E I   I,I B I,I +1 = ,   A I,I A − T I + 1 O   I,I   . . .   E   ...     E – Typeset by Foil T EX – 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend