poincar inequalities that fail to constitute an open
play

Poincar inequalities that fail to constitute an open-ended - PowerPoint PPT Presentation

Poincar inequalities that fail to constitute an open-ended condition Luk Mal Workshop on Geometric Measure Theory July 14, 2017 Poincar inequalities Setting Let ( X , d, ) be a complete metric space


  1. ﯲ ﯰ ﯱ ﯰ Poincaré inequalities that fail to constitute an open-ended condition Lukáš Malý Workshop on Geometric Measure Theory July 14, 2017

  2. ﯰ ﯱ Poincaré inequalities Setting Let ( X , d, µ ) be a complete metric space endowed with a doubling measure . Definition (Heinonen–Koskela, 1996) A B or e l f un c tion g ∶ X → [ 0 , ∞ ] is a n upper gradient o f u ∶ X → R i f ∣ u ( γ ( 0 )) − u ( γ ( l γ ))∣ ≤ ∫ γ g ds f or eve r y r ec ti fiab l e c ur ve γ ∶ [ 0, l γ ] → X . Definition (Heinonen–Koskela, 1996) T h e sp ace X ad mits a ( 1 , p ) -Poincaré inequality w ith p ∈ [ 1 , ∞ ) i f 1 / p ∫ B ∣ u − u B ∣ d µ ≤ c PI d i a m ( B )( ∫ λ B g p d µ ) lo c ( X ) , its upp e r g r ad i e nt g , a n d eve r y ba ll B ⊂ X , w h e r e c PI , λ ≥ 1. f or eve r y u ∈ L 1 Lukáš Malý Poincaré inequalities that fail to be open-ended 1/17

  3. ﯰ ﯱ Self-impro v ement of Poincaré inequalities Theorem (Keith–Zhong, 2 00 8) If X ad mits a p- P oin ca r é in e qu a lit y w ith p ∈ ( 1, ∞ ) , th e n it ad mits a ( p − ε ) - P oin ca r é in e qu a lit y f or som e ε > 0 . Re m a rk : B oth c ompl e t e n e ss o f X a n d d ou b lin g o f µ a r e us ed! E x ample (Koskela, 1999) F or eve r y 1 < p ≤ n , th e r e is a c los ed s e t E ⊂ R n o f ze ro L n -m ea sur e su c h th a t X = R n \ E supports a p - PI, b ut not q - PI f or a n y q < p . Re m a rk : X in this exa mpl e is lo ca ll y c omp ac t a n d µ ≔ L n ∣ X is d ou b lin g . Question D o e s a n A - PI w ith a n ave r ag in g op e r a tor A on th e RHS o f PI ( A is c los e to th e L p - ave r age ) impro ve to a ( p − ε ) - PI? Lukáš Malý Poincaré inequalities that fail to be open-ended 2/17

  4. ﯰ ﯱ M otiv a tion T h e or e m ( D ur a n d - Ca rt age n a, Ja r a millo , S h a nmu ga lin ga m , 2013) Assume that µ is A hl f ors s-r eg ul a r (i. e . , µ ( B ( x , r )) ≈ r s ). Le t p > s. T h e n , TFAE: ▶ X supports a p- PI ; ▶ E v e r y u ∈ N 1, p ( X ) is ( 1 − s p ) - H öl de r c ontinuous a n d ∣ u ( x ) − u ( y )∣ ≲ d ( x , y ) 1 − s / p ∥ g u ∥ L p ( B ( x , λ d ( x , y ))) ▶ T h e r e is C ≥ 1 su c h th a t f or a ll x , y ∈ X Mod p ({ γ ∈ Γ x , y ∶ len ( γ ) ≤ C d ( x , y )}) ≈ d ( x , y ) s − p Lukáš Malý Poincaré inequalities that fail to be open-ended 3/17

  5. ﯰ ﯱ M otiv a tion Idea f or th e c riti ca l e xpon e nt Assume that µ is Ahlfors s -regular, s ≥ 1 (i.e., µ ( B ( x , r )) ≈ r s ). Then, TFAE: 1. X supports a Lorentz-type L s ,1 - PI 2. Eve r y u ∈ N 1 L s , 1 ( X ) is c ontinuous a n d ∣ u ( x ) − u ( y )∣ ≲ ∥ g u ∥ L s , 1 ( B ( x , λ d ( x , y ))) 3. T h e r e is C ≥ 1 su c h th a t f or a ll x , y ∈ X M o d L s , 1 ({ γ ∈ Γ x , y ∶ l e n ( γ ) ≤ C d ( x , y )}) ≈ 1 W orks f or s = 1 F or s > 1 , th e f ollo w in g ca n be pro v e n : 1. ⇐ 2. ⇔ 3. p - PI w ith p < s ⇒ 2. Lukáš Malý Poincaré inequalities that fail to be open-ended 4/17

  6. ﯰ ﯱ L or e ntz spaces L p , q Norm in the Lebesgue L p -spaces 1 / p 1 / p ∥ u ∥ L p ( X ) = ( ∫ X ∣ u ( x )∣ p d µ ( x )) = ( ∑ k ∈ Z ∫ { x ∶ 2 k < ∣ u ( x )∣ ≤ 2 k + 1 } ∣ u ( x )∣ p d µ ( x )) = � � 1 / p � � � ∞ � = ( ∑ ∥ u χ { 2 k < ∣ u ∣ ≤ 2 k + 1 } ∥ L p ( X ) ) p �{∥ u χ { 2 k < ∣ u ∣ ≤ 2 k + 1 } ∥ L p ( X ) } � � � � � ℓ p ( Z ) k = −∞ k ∈ Z Definition (functional comparable w ith the Lorent z norm) Let p ∈ [ 1, ∞ ) and q ∈ [ 1, ∞ ] . Then, we define ∣∣∣ u ∣∣∣ L p , q ( X ) = � � � � � ∞ � �{∥ u χ { 2 k < ∣ u ∣ ≤ 2 k + 1 } ∥ L p ( X ) } � � � � � ℓ q ( Z ) k = −∞ Re m ark: L p ,1 ( X ) ↪ L p ( X ) = L p , p ( X ) ↪ L p , ∞ ( X ) for 1 ≤ p < ∞ . Remark: L p log α L ( X ) ↪ L p , q ( X ) , whene v er α > ( p / q ) − 1 ≥ 0 . Lukáš Malý Poincaré inequalities that fail to be open-ended 5/17

  7. ﯰ ﯱ K nown r esults on Orlic z –Poincaré inequalities Definition (Orlic z –Poincaré inequalit y ) Let Ψ ∶ [ 0, ∞ ) → [ 0, ∞ ) be strictly increasing, continuous, and con v e x w ith Ψ ( 0 + ) = 0 and Ψ ( ∞ − ) = ∞ . The space X admits a Ψ - P oin ca r é in e qu a lit y if ∫ B ∣ u − u B ∣ d µ ≤ c P I d i a m ( B ) Ψ − 1 ( ∫ λ B Ψ ( g ) d µ ) lo c ( X ) , its upp e r g r ad i e nt g , a n d eve r y ba ll B ⊂ X , w h e r e c PI , λ ≥ 1. f or eve r y u ∈ L 1 Re m a rk : If Ψ ( t ) = t p , th e n Ψ - PI is just a p - PI . S om e s e l f -impro ve m e nt o f Ψ - PI to ( p − ε ) - PI ca n be ex p ec t ed i f Ψ ( t ) ∼ t p η ( t ) , w h e r e η ( t ) g ro w s (or decay s) slo we r th a n a n y po we r t δ (or t − δ ) Lukáš Malý Poincaré inequalities that fail to be open-ended 6/17

  8. ﯰ ﯱ K nown r esults on Orlic z –Poincaré inequalities Theorem (J. B jörn , 2010) T h e E u c li dea n sp ace ( R , µ ) ad mits a Ψ - PI if and only if th e Ha r d y –L ittl e w oo d m a x im a l op e r a tor M ∶ L Ψ ( R , µ ) → L Ψ ( R , µ ) is b oun ded . T h e or e m ( B loom –Ke rm a n , 199 4 ) Le t Ψ ( t ) = t p log α ( e + t ) w ith p > 1 a n d α ∈ R . If M ∶ L Ψ ( R , µ ) → L Ψ ( R , µ ) is b oun ded, th e n M ∶ L p − ε ( R , µ ) → L p − ε ( R , µ ) is b oun ded f or som e ε > 0 . C oroll a ry S uppos e th a t ( R n , µ ) , w h e r e µ = µ 1 × µ 2 × ⋯ × µ n , ad mits a Ψ - PI, w h e r e Ψ ( t ) = t p log α ( e + t ) f or som e p > 1 a n d α ∈ R . T h e n , ( R n , µ ) ad mits a ( p − ε ) - PI f or som e ε > 0 . Lukáš Malý Poincaré inequalities that fail to be open-ended 7/17

  9. ﯰ ﯱ L or e ntz-typ e P oin ca r é in e qu a liti es Definition (Lorent z -t y pe Poincaré inequalit y ) Let p ∈ [ 1, ∞ ) and q ∈ [ 1, ∞ ] . The space X admits an L p , q - P oin ca r é in e qu a lit y if ∥ gχ λ B ∥ L p , q ( X ) ∥ gχ λ B ∥ L p , q ( X ) ∫ B ∣ u − u B ∣ d µ ≤ c P I d i a m ( B ) = c PI d i a m ( B ) ∥ χ λ B ∥ L p , q ( X ) µ ( λ B ) 1 / p lo c ( X ) , its upp e r g r ad i e nt g , a n d eve r y ba ll B ⊂ X , w h e r e c PI , λ ≥ 1. f or eve r y u ∈ L 1 Re m a rk : If p = q , th e n L p , q - PI is just a p - PI . Obser v ation D u e to th e e m bedd in g be t wee n L or e nt z sp ace s , we h ave L p , Q - PI L p , q - PI p - PI ⇒ ⇒ w h e n eve r 1 ≤ q < p < Q ≤ ∞ . Lukáš Malý Poincaré inequalities that fail to be open-ended 8/17

  10. ﯰ ﯱ L or e ntz-typ e P oin ca r é in e qu a liti es Comparison to Muckenhoupt w eights on R ▶ ( R , µ ) admits an L p , q - PI, p ∈ ( 1 , ∞ ) , q ∈ [ 1 , ∞ ] , if and onl y if th e HL m ax im a l op e r a tor M ∶ L p , q ( R , µ ) → L p , q ( R , µ ) is b oun ded . ▶ M ∶ L p , q ( R , µ ) → L p , q ( R , µ ) is b oun ded if and onl y if M ∶ L p ( R , µ ) → L p ( R , µ ) is b oun ded, p ∈ ( 1 , ∞ ) , q ∈ ( 1 , ∞ ] . ( C hun g–H unt –K urt z, 19 8 2) ▶ If ( R n , µ ) , w h e r e µ = µ 1 × ⋯ × µ n , ad mits a n L p , q - PI w ith p ∈ ( 1 , ∞ ) a n d q ∈ ( 1 , ∞ ] , th e n it ad mits a ( p − ε ) - PI f or som e ε > 0 . Question D o e s a n L p , 1 - PI un de r g o s e l f -impro ve m e n t? Lukáš Malý Poincaré inequalities that fail to be open-ended 9/17

  11. ﯰ ﯱ Ge n e r a l P oin ca r é in e qu a liti es + ( X ) × B ( X ) → [ 0, ∞ ] be an a v erag in g op e r a tor , i.e., Let A ∶ L 0 ▶ A ( c , B ) ≈ c for e v er y constant c ≥ 0 and e v er y ball B ⊂ X ; ▶ if 0 ≤ g 1 ≤ g 2 a.e. in B , then A ( g 1 , B ) ≤ A ( g 2 , B ) . Let M A be the associated (non-centered) ma x imal operator M A f ( x ) = sup A (∣ f ∣ , B ) , x ∈ X . B ∋ x Definition (Generali z ed Poincaré inequalit y ) The space X admits an A - P oin ca r é in e qu a lit y if ∫ B ∣ u − u B ∣ d µ ≤ c P I d i a m ( B ) A ( g , λ B ) lo c ( X ) , its upp e r g r ad i e nt g , a n d eve r y ba ll B ⊂ X , w h e r e c PI , λ ≥ 1. f or eve r y u ∈ L 1 Lukáš Malý Poincaré inequalities that fail to be open-ended 10/17

  12. ﯰ ﯱ Ge n e r a l P oin ca r é in e qu a liti es Lemma (M.) Assume that X supports a n A - PI . S upp ose that 1 / p A A ( g , B ) ≲ ( ∫ B g p A dµ ) for all g , B . The n , X ad mits a ( p A − ε ) - PI f or som e ε > 0 . Corollar y Le t p > 1 . S uppos e th a t X supports ▶ a n L p , q - PI w ith q ∈ [ p , ∞ ] , OR ▶ a Ψ - PI w ith Ψ ( t ) ∼ t p log α ( e + t ) , w h e r e α ∈ R . T h e n , X ad mits a ( p − ε ) - PI f or som e ε > 0 . Lukáš Malý Poincaré inequalities that fail to be open-ended 11/17

  13. ﯰ ﯱ Ge n e r a l P oin ca r é in e qu a liti es Theorem (M.) Assume that X supports a n A - PI a n d th a t M A ∶ RI 1 ( X ) → w- RI 2 ( X ) is b oun ded, w h e r e RI 1 a n d RI 2 a r e r ea rr a n ge m e nt in v a ri a nt sp ace s , su c h th a t : ▶ RI 1 a n d RI 2 a r e c los e to eac h oth e r , v i z . , th e ir f un da m e nt a l f un c tions s a tis f y 2 ( t )) ≤ t ( 1 + lo g − t ) β , t ≤ φ 1 ( φ − 1 β ≥ 0 ; ∥ f χ ⋃ k E k ∥ ∥ f χ E k ∥ q q RI 1 ≤ C ∑ ▶ RI 1 s a tis fie s a n upp e r q- e stim a t e, i. e . , RI 1 , q ≥ 1; k φ 1 ( t p A ) ▶ RI 1 li e s c los e to L p A , sp ec i fica ll y , t ( log − t ) 1 − ( β + 1 / q ) → 0 a s t → 0 . T h e n , X ad mits a ( p A − ε ) - PI f or som e ε > 0 . Lukáš Malý Poincaré inequalities that fail to be open-ended 12/17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend